356 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fast Online Synthesis of Digital
Microfluidic Biochips

Daniel T. Grissom and Philip Brisk, Member, IEEE

Abstract—We introduce an online synthesis flow, focusing
primarily on the virtual topology and operation binder, for digital
microfluidic biochips, which will enable real-time response to
errors and control flow. The objective of this flow is to facilitate
fast assay synthesis while minimally compromising the quality
of results. In particular, we show that a virtual topology, which
constrains the allowable locations of assay operations such as
mixing, dilution, sensing, etc., in lieu of traditional placement, can
significantly speed up the synthesis process without significantly
lengthening assay execution time. We present a base virtual
topology and show how it can be leveraged to reduce algorithmic
runtimes and guarantee rout ability. We later present several
variations of the virtual topology and present experimental
results demonstrating best-design practices. We present two
binding solutions. The first is a left-edge binding algorithm, while
the second is a more intelligent path-based binding algorithm
that leverages spatial and temporal locality to produce superior
results.

Index Terms—Laboratory-on-chip, microfluidics, placement,
routing, scheduling, synthesis.

1. INTRODUCTION

ITH THE emergence of novel, scalable, flexible digital
micro fluidic biochips (DMFBs) [17], new features
such as end-user programmability and online synthesis will
revolutionize micro fluidic applications. Instead of application-
specific DMFBs, low-cost, general-purpose DMFBs will pro-
vide a reusable, flexible, and programmable platform. With
the notion of end-user programmability being introduced to
DMFBs, control-flow constructs present exciting, new pos-
sibilities for microfluidic applications. Consequently, when
control-flow 1is introduced, synthesis (Fig. 1) will need to
be performed online since the order of assays (biochemical
reactions) to be executed is no longer deterministic, but instead
dependent on live-feedback from the DMFB [2]-[15].
In contrast to offline compilers, which synthesize assays
as deterministic state-machines, an online interpreter will
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Fig. 1. DMFB synthesis consists of scheduling, placing, and routing
(Fig. 3, [11]).
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Fig. 2. Offline versus online synthesis tradeoffs.

act more like a virtual machine that manages the DMFBs
resources and interprets assays on-the-fly. Fig. 2 shows the
tradeoffs that need to be made when moving synthesis online.
During offline compilation, optimized designs are created with
little concern to algorithmic runtime (time need for synthesis)
since the synthesis process is run once and the compiled “exe-
cutable binary” is packaged into an application-specific device.
With a programmable DMFB, the end-user will have to wait
each time a programmed assay is synthesized. Furthermore,
each time a branch is taken, the user will have to wait as
the target assay of the branch is interpreted online. Thus, new
synthesis methods are needed that concede optimality in assay
length (i.e., schedules) and area to reduce algorithmic runtimes
from seconds/minutes to milliseconds and achieve a greater
amount of flexibility [15].

A. Motivation

We motivate the need for fast, online synthesis methods
with an example that is either impossible without this feature,
or requires unreasonably complex solutions. Consider a drug-
discovery application where a DMFB executes an assay,
measures the result and then automatically executes a new
assay (or batch of assays) with different concentrations, based
on the previous result. This process is repeated thousands of
times until a set of concentrations yielding the desired result
is discovered.

With offline compilation, a single graph must be created that
details every possible execution path, which quickly becomes
intractable as the compiler must account for numerous paths
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Fig. 3. (a) Placement failure occurs because there is insufficient space for
M7 to be placed given the placement of modules M1-M6; (b) Routing failure
occurs because the droplet (D) is attempting to reach the detection zone
(marked with magnifying glass lenses) but cannot because modules M1-M3
are placed in such a way that block all paths to the destination.

that will never be taken [2]. Instead, upon completion of one
assay, an online interpreter could immediately interpret and
execute the next assay with only milliseconds of downtime
between assays.

Although synthesis has been performed entirely offline up
to this point, Ho et al. [13] suggest that online systems are
forthcoming with the development of specialized heuristics,
which can perform synthesis in milliseconds. Luo ef al. [15]
have implemented one such specialized heuristic for an error
detection and recovery scheme based on check-pointing: at
each checkpoint, a droplet is routed to a sensor that detects
whether its concentration is satisfactory; if not, the assay is
resynthesized on-the-fly to repeat the sequence of operations
that produced the droplet, interleaving the schedule of these
newly-introduced operations with concurrent operations that
do not depend on the droplet that failed the checkpoint.

B. Problem Formulation

A synthesis tool that converts a micro fluidic assay from
a sequencing graph specification to a sequence of electrode
activations must solve three NP-Hard problems: scheduling;
placement; and routing.

Scheduling: A solution to the scheduling problem deter-
mines the time at which each assay operation starts and
finishes, including the allocation of temporary storage for
intermediate droplets, while ensuring that: 1) the schedule
satisfies all precedence constraints in the sequencing graph and
2) the demand for resources at each time-step of the schedule
does not exceed the supply of resources in the target DMFB
[18], [26].

Placement: At each time-step of the schedule, all of the
executing operations and stored droplets must be placed at
different locations on the chip while simultaneously ensuring
that modules are arranged in such a way as to avoid placement
failure [e.g., Fig. 3(a)]. In particular, operations that required
specialized external devices, such as heating or detection,

must be placed on DMFB locations that are accessible to the
appropriate specialized devices [27].

Routing: At different times during assay execution, droplets
must be transported to different DMFB locations, e.g., from
an input reservoir to where an operation will start, from
the location of one operation to another operation, or to a
temporary storage location, or to an output reservoir. During
routing, droplets in-transit must not inadvertently collide with
one another, or collide with other assay operations that are
in-progress [29].

In general, the objective of scheduling, placement, and
routing is to minimize assay execution time. In addition to
these basic requirements, we introduce three new goals: 1) fast
algorithmic runtimes; 2) placements that guarantee routability;
and 3) deadlock-free routing. Fast algorithmic runtimes are
imperative for dynamic synthesis and resynthesis to facilitate
control flow and error detection and recovery scenarios in a
way that does not cause large delays. Placements must be
routable a priori, because the computational overhead to detect
and rectify unroutable placements [e.g., Fig. 3(b)] is signifi-
cant. Droplet deadlocks are problematic because no droplet can
advance toward its destination, preventing completion of the
assay; the computational overhead to detect and rectify dead-
lock situations that may occur during routing is significant.
The usage of the virtual topology seamlessly achieves all three
of these objectives by reducing the algorithmic complexity of
synthesis and providing the order and constructs necessary to
compute routable placements and deadlock-free routes on the
first attempt.

C. Contribution

Assays are synthesized by computing solutions for three
NP-complete problems, as seen in Fig. 1 Before synthesis,
an assay is modeled as a directed acyclic graph (DAG),
where the nodes and edges represent operations and operation
dependencies, respectively. Each assay operation is then as-
signed start/stop times during resource-constrained scheduling
[21]. During the placement stage, the scheduled operations
are assigned specific locations, called modules, on the array
[27]. Finally, the routing stage computes droplet paths between
subsequent modules and I/O ports so droplets arrive safely at
each destination [29].

We present an online synthesis flow that can interpret assays
and map them onto a cross-referenced, fully-addressable or
active-matrix DMFB [17] in milliseconds, making it appropri-
ate for both offline and online synthesis. Our key contribution
is a virtual topology that defines distinct regions for module
placement and droplet routing. With our topology in mind,
we present several constraints are necessary and apply them
to list scheduling [26] and path scheduling [11] to quickly
produce schedules. Placement, which has been solved in the
past by iterative improvement algorithms [27], [35] or integer
linear programming (ILP) [14], is simplified to a binding
problem, which can be solved efficiently in polynomial-time.
We present two fast binding solutions. The placement defined
by the virtual topology provides dedicated routing cells which
ease the router’s job. We simplify an existing router [22] to
compute droplet paths very quickly.
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Fig. 4. (a) DMFB with a 2-D array of electrodes. (b) DMFB cross section
(Fig. 1, [11]).

D. DMFB Technology Overview

A DMFB manipulates discrete droplets of fluid on a 2-D
array of electrodes [Fig. 4(a)] through electrowetting, a process
that induces droplet motion [20]. Fig. 4(b) shows a droplet
sandwiched between a ground electrode and a set of inde-
pendent control electrodes. The droplet is centered over one
electrode (CE2), but overlaps adjacent electrodes CEl and
CE3. If a voltage is applied to CEl1 or CE3, the surface
energy gradient induces motion and the droplet moves to the
center of the newly activated electrode(s). During each droplet-
actuation cycle, a set of electrodes is activated, which moves
droplets from electrode to electrode. Basic assay operations
such as transport, mixing, merging, and splitting are performed
through the appropriate sequence of electrode activations over
a number of cycles.

There are several classes of DMFBs that provide varying
levels of droplet control. Typical direct-addressing (fully-
addressable) DMFBs have one control pin for each electrode
(i.e., (M x N) control pins for an (M x N) array of electrodes)
so each electrode (droplet) can be independently controlled
at all times. However, the wiring cost of independently con-
trolled electrodes, especially as array sizes grow, has motivated
cheaper designs [32].

Cross-referencing DMFBs use (M + N) control pins to
control an (M xN) array of electrodes [7]. In this scheme,
each row and each column has a single control pin; when a
particular column m and row n are activated, the electrode
at (m,n) is activated. Multiple columns and rows can be
simultaneously activated, but may cause superfluous electrode
activation, yielding undesired droplet movement [31]. Thus,
once a route for a direct-addressing DMFB is computed, each
droplet-actuation cycle is serialized across multiple droplet-
actuation cycles, resulting in prolonged routing times and
increased algorithmic complexity.

Pin-constrained DMFBs represent another addressing
scheme. An assay is first synthesized as if on a direct-
addressing DMFB. Then, special heuristics attempting to
solve the clique partitioning problem (NP-Hard) are used to
minimize the total number of control pins, based on which
electrodes can be activated together without causing undesired
droplet movement [32].

To summarize, pin-constrained designs offer minimal prod-
uct costs, are inflexible and cannot be reprogrammed af-
ter being manufactured; cross-referencing DMFBs are repro-
grammable, but add another layer of complexity that must be
handled to serialize droplet motion [31].

Fortunately, active-matrix addressing designs are emerging
which give independent control of (M xN) electrodes while

using only (M + N) control pins [17]. Active matrix ad-
dressing can scale without growing prohibitively expensive,
while maintaining the maximum level of flexibility and control
so that assays can be programmed with minimal levels of
algorithmic complexity. The online synthesis flow presented
in this paper is compatible with direct, cross-referencing, and
active-matrix addressing DMFBs.

II. RELATED WORK

Here, we highlight some of the previous work in DMFB
synthesis for scheduling, placement and routing.

A. Scheduling

Su and Chakrabarty [26] present modified list scheduling
(MLS) and genetic algorithm (GA) heuristics, as well as an op-
timal integer linear programming (ILP) model for scheduling
microfluidic operations onto a DMFB. As expected, the ILP
implementation consumes a large amount of time to compute
optimal solutions. Although the GA finds optimal or near-
optimal results in much less time than ILP, its iterative nature
still results in large computation times. MLS produces sched-
ules comparable to GA in much less time. Other scheduling
algorithms such as Ricketts’ hybrid genetic algorithm [21] and
Maftei’s tabu search scheduler [16] are iterative improvement
algorithms which spend anywhere from four seconds to one
hour computing schedules. We chose list scheduling as the
base scheduler for our framework, but other fast schedulers
being developed now [11], [18], or in the future could be used
as well.

B. Placement

At the physical level, all electrodes are equally capable
of performing the basic microfluidic operations (i.e., merg-
ing, mixing, splitting, transport, storage). Hence, basic oper-
ations can be performed anywhere on a DMFB array. The
objective for most placers is to pack as many concurrent
operations/modules into as little area as possible. Several
direct-addressing placement and unified scheduling-placement
algorithms [27], [28], [33], [35] use simulated annealing,
which run in minutes or tens of seconds; in contrast, our online
flow completes in tens of milliseconds.

Griffith et al. [8] place a virtual topology onto the DMFB,
which dictates separate regions for assay operations and
droplet routing. However, they only present results for one
assay, and their implementation suffers from deadlocks dur-
ing droplet routing. Our approach is similar, but does not
suffer from deadlock; in the absolute worst case, our router
will transport one droplet at a time; however, we include a
compaction step to transport multiple droplets concurrently.

C. Routing

Bohringer [5] modeled droplet routing as an A* search, sim-
ilar to path planning in robotics, achieving an optimal-length
solution, when routable. Su et al. [29] route droplets sequen-
tially and redo placement when routing fails. BioRoute [34]
uses a min-cost max-flow algorithm to compute several routes
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Fig. 5. Virtual topology imposed onto a DMFB.
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Fig. 6. Entrance cells (I1/12) and exit cells (01/02). (a) 3x3 module.
(b) 4x3 module. (c) 3x4 module.

at once, followed by negotiation-based detailed routing. Cho
and Pan [6] route droplets one-by-one and sort them based
on a by passability metric; if a deadlock occurs, droplets are
moved to concession zones to break the deadlock. Huang
and Ho [12] construct a system of global routing tracks,
which are aligned in the same direction as the majority of
droplets traveling on that tract. They use an entropy-based
equation to determine the order in which droplets are routed,
and finally, compact the routes using dynamic programming.
Since the aforementioned methods were designed for offline
routing, few mention runtimes [5], [6], [29]. Bio Route [34]
and Huang’s algorithm [12] both report runtimes below one
second on a desktop PC. The router used in our online
flow, a modified version of Roy’s maze router [22], achieves
comparable runtimes, while achieving deadlock freedom.

D. Combined Methods

Most work on synthesis has focused on the scheduling,
placement or routing problems in isolation. Several papers,
however, solve some of these problems together, using iterative
improvement heuristics [15], [27], [28], [33], [35], whose
runtime is prohibitive. These approaches address problems that
can arise when one stage of synthesis does not consider the
next. For instance, a placer can generate a valid placement that
is unroutable. Our virtual topology ensures routability by leav-
ing room for droplets to pass between adjacent modules where
mixing, storage, and other assay operations are performed.

III. VIRTUAL TOPOLOGY

Our online interpreter utilizes a virtual topology, as seen
in Fig. 5, and takes advantage of its order and structure to
yield fast algorithmic runtimes for scheduling, placement and
routing. First, we define a cell as the 2-D area covering
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Fig. 7. Assay time-line showing that each fixed time-step (TS) is interleaved
with a variable-length routing phase (R).

an electrode. The virtual topology shows regularly spaced
modules (3x3 squares of cells) where basic droplet operations
(i.e., merge, mix, split, and store) are performed. If at least one
of a module’s cells is augmented with an external detector or
heater, the module can also perform detect or heat operations,
respectively. The white cells indicate the area of the DMFB
array used explicitly for routing droplets between modules
and I/O ports (not pictured); however, any cell can be used
for routing if a module is not in use. Dedicated routing cells
ensure there is a valid path between any source-destination
pair. A perimeter of interference region (IR) cells surrounds
each module [29], so that interference-free droplet routes can
be computed easily. This topology ensures that there is at least
one path between all DMFB inputs, modules, and outputs. The
inputs and outputs (not shown in Fig. 5) are on the perimeter
of the chip.

A. Module Topology and Synchronization

To help prevent droplet deadlock, droplets have well-defined
module entrance and exit locations, as seen in the 3x3 module
of Fig. 6(a). The two entrances are in the northwest and
southwest corners, while the exits are in the northeast and
southeast corners. By providing distinct entrances and exits,
we prevent droplet deadlock by allowing droplets leaving a
module to wait safely in their exit cells as long as necessary
to avoid deadlock in the routing cells. Fig. 6(b) and (c)
show that modules can be elongated along the x or y-axis to
accommodate larger 2x4 mixers, often used in literature [19],
[21].

As seen in Fig. 7, time-step stages of assay operations are
interleaved with routing stages until the entire schedule has
been processed. A time-step is the basic, minimum-resolution
unit of time used to schedule microfluidic operations. Time-
steps usually last one or two seconds, and are fixed in length
for the duration of the assay. The routing stages are variable
in length, depending on the routes that are generated, and can
even be instantaneous if no droplets are being routed between
time-steps.

Droplets are required to enter/exit a module at one of the
two entrances/exits. When a droplet travels to a new module,
it must enter the module during the routing phase at one of
the module-entrance cells and wait until the time-step officially
begins. The droplet is then processed (e.g., split, mixed, stored)
during the time-step phase. If a droplet leaves the module
after the current time-step, it must position itself at one of the
module-exit cells before the end of the time-step. In Fig. 6(a)
droplets 1 and 2 (D1/D2) enter a module to be processed while
droplets 3 and 4 (D3/D4) exit to be processed elsewhere. If
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Fig. 8. Intramodule droplet processing/routing for microfluidic operations.

D1 and D2 arrive before D3 and/or D4 exit, there will be no
conflict since the entrance and exit cells are sufficiently spaced
to avoid droplet interference. When the time-step begins, D1
and D2 can move freely within the module, as D3 and D4 are
at their respective destinations. This synchronization scheme
prevents intermodule deadlocks because there is always an
open spot at the destination module’s entrances for every
incoming droplet at every module.

Fig. 8 shows how a module can perform each assay oper-
ation. For each operation, the droplet(s) enters at one of the
entrance cells and then waits for the time-step to begin. When
the time-step begins, any droplets that were waiting in the exit
cells are now gone, and thus, any remaining droplets in the
module are free to move about the entire module to perform
an operation. If the droplet(s) leaves the module at the end
of the time-step, it moves to an exit cell before the time-step
ends. Once the time-step is complete, during the subsequent
routing stage, the droplet(s) exits the module. If a droplet is
scheduled to begin a new operation in the same module at the
next time-step, it maneuvers itself to an entrance cell before
the time-step ends (not shown in Fig. 8); this eliminates the
need for a droplet to exit and then reenter the same module.

IV. FAST ONLINE SYNTHESIS

In this section, we show how the virtual topology presented
in Section III can be leveraged to create fast online synthesis
methods for scheduling, placement and routing.
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Fig. 9. Two DMFB scenarios with droplets that are going to be split (Sp)
or detected (D) during the next time-step. (a) Sp6 can move and occupy the
open space in another module, allowing D1 and Sp5 to swap so DI can be
detected in the detect-module. (b) There is no way to isolate a single droplet
and since no droplets will be mixed next time-step, the assay cannot continue.

A. Scheduling

In this section we describe the definitions and constraints
that must be observed during the scheduling phase. For online
scheduling, a number of fast schedulers can be used with our
topology that maintain the constraints defined in this section.

An assay is given to the scheduler in the form of a DAG,
G = (V, E), where the vertices (V) and edges (E) represent
assay operations and operation dependencies, respectively. If
the given DMFB is an a,xa, array of cells and each module
is myxm, cells, then the total number of modules, N,,, can
be calculated as seen in (1). We add cells to the module
dimensions to encapsulate the IR cells and the routing cells to
the right (for the X dimension) of each module (Fig. 5)

{(ax—nJ § L(ay—@J N 0
(my +3) (my +1)

Once the virtual topology is placed, modules with external
devices above their cells are considered to be special modules
(e.g., detect module and heat module). All other modules are
considered to be basic modules. The array is initially populated
based on the virtual topology. An array called availMods[]
contains the number of modules of each module-type (e.g.,
basic module, detect module, and so on), and satisfies the
following condition:

numModTypes

by

i=1

availMods[i] = N,,. ()

We define s,, to be the number of droplets a module can
store and d,;,, to be the maximum number of droplets we
allow on the DMFB during any time-step. Since each module
has two entrance and two exit cells, a module can store two
droplets during a time-step (i.e., s, = 2). Consider Fig. 9(a)
in which all but one of the modules is at maximum capacity.
Since the northeast module has room for one droplet, droplets
can be shuffled around so that any single droplet on the array
can be isolated in any chamber, allowing the assay to continue.
However, if all modules are at maximum capacity [Fig. 9(b)],
then deadlock may arise because it is impossible to process
more operations unless some of the droplets are scheduled
to output or mix with each other next time-step. To reduce
the likelihood of scheduling deadlock, we set the maximum
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Fig. 10. (a) Randomly-bound sequencing graph for a simple assay requiring
six droplet routes. (b) Sequencing graph with intelligent module selection
requiring only three droplet routes. (¢) Compressed sequencing graph.

number of droplets permitted on the DMFB during any time-
step (dyqx) as follows:

Amax = (N Xsp) — 1. (3)

In our experimental section, we have successfully applied
these constrains to two fast schedulers: list scheduling (LS)
[26] and path scheduling (PS) [11]. LS is a greedy, constructive
algorithm in which each operation (node) in an assay (DAG)
is scheduled exactly once. LS is much faster than iterative
improvement algorithms, which randomly compute numerous
schedules [16], [21], [26] or optimal algorithms based on
integer linear programming [26]; however, these approaches
generally do produce higher quality schedules than LS. PS is
another scheduler that attempts to schedule DAGs one path at
a time (as opposed to a single node at a time). PS’s runtimes
have been found competitive to LS and produces superior
schedules for assays with high fan-out. These schedulers were
used because their fast runtimes allow them to be used in the
context of online synthesis.

B. Placement

Microfluidic placement is NP-complete [27]; the virtual
topology limits the reconfigurable capabilities of the DMFB
by preplacing the location of modules. In our framework,
operations are bound to preplaced modules in accordance with
the schedule that has been computed a priori. The scheduler
assigns operations to module-types (e.g., basic or specialized),
but does not select a specific module for each operation; this
is the job of the binder.

1) Path-Based Binding Algorithm: In this section, we
present a more-intelligent, path-based binding algorithm that
is inspired by Tseng’s binding procedure for flow-based mi-
crofluidic biochips in which continuous operations are bound
to the same component to reduce the amount of valve switch-
ing and overall assay completion time [30]. Tseng’s algorithm
was used for flow-based microfluidic devices, which are fun-
damentally different than DMFBs, and thus, is not directly

1 // Initializations for graph variables

2 Given a scheduled sequencing graph of nodes: G = (V, E)
3 Storage operations: storageOps = V. storageOps

4 Input operations: inputOps = V. inputOps

5 Output operations: outputOps = V. outputOps

7 [/ Initializations for path-based variables

8 New sequencing graph of PathNodes: G, = (V,, £,) = 0

9 New List of PathNodes: pathLeaders = 0

10 Operations by module-type: pathOpsByModType[numModTypes] = @

12 // Setting up path-based graph
13 pathLeaders = GetPathLeaders(G)
14 G, = GeneratePathCompressedGraph(pathLeaders)

16 // Sort variables into bins and sort by start time

17 pathOpsByModType[ ] = SortOpsByModType(G,)

18 Sort inputOps, outputOps, storageOps, all lists in pathOpsByModType| ]
19 :ascending by start time
20 // Do binding of all nodes

21 LeftEdgeBind(pathOpsByModType[ ])

22 LeftEdgeBind(inputQps)

23 LeftEdgeBind(outputOps)

24 Storage by module location: storageByModLoc[numMods] = @;

25 storageByModLoc| ] = SelectModuleLocations(storageOps) ;

26 BindStorageToHolders(storageByModLoc[ ]);

Fig. 11. Pseudocode for our path-based binder.

applicable to DMFBs; however, the key principle that binding
contiguously scheduled operations to the same component will
reduce fluid transfers (droplet routes in the case of DMFBs)
can be applied to both classes of microfluidic devices. This
principle of spatial locality for contiguous operations was
applied to path binder as described in the following sections
to reduce droplet routing times.

In a previous work, Grissom and Brisk [10] present a fast
binding solution based on the left-edge algorithm. When com-
pared to the left-edge binder, the path-based binder is faster
and performs binding in such a way that reduces route lengths.
The left-edge binder does not take into account module-types
or the locations of parent/child modules, instead, binds each
operation to the first available module it finds with a matching
module-type. Pathbinder takes parent/child module locations
into consideration (reducing routing distances) and although it
does use left-edge binding, performs preprocessing to reduce
the graph, which eases algorithmic runtimes.

Fig. 10(a) shows a simple sequencing graph with seven
nodes (for clarity, we will call these basic nodes for the
remainder of this section). The edges denote operation prece-
dence (e.g., N5 can only begin after N1 and N2 have com-
pleted); since each successive basic node has a different
module location than its parent, the edges in Fig. 10(a) also
denote droplets needing to be routed. Fig. 10(b) shows that
certain routes can be eliminated if the binder selects the same
module location for successive basic nodes(a key idea for
path binder), allowing the router to sometimes produce shorter
droplet routes because it will have less droplets to route.
Furthermore, Fig. 10(c) shows that if successive nodes have
the same module-type and location, they can be combined
into path nodes, which contain a contiguous sub-set of basic
nodes from the original sequencing graph (e.g. PN1 contains
the sub-path N1, N5 and N7). When compared to the simple
left-edge binder, the use of path nodes reduces the overall
number of nodes in the sequencing graph, reducing the size
of the problem and allowing for shorter algorithmic runtimes.
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Given a list of path leaders: pathLeaders

1

2 Sequencing graph containing path leader PathNodes: G, = pathLeaders
3

4 for (Vp : p € pathLeaders)

5 Node n = p.nodes. front;

6 if (Type(n) == storage)

7 Create new PathNode, npn, containing Node n. children. front:
8 Add npn to pathLeaders, insert into G;

9 else // Traverse path

10 List uve = GetUnVisitedChildren(n);
11 while (uvc. size = 0)

12 List ec = GetEligibleNodes(uvc); // n’s eligible Children

13 List uec = GetlneligibleNodes(uvc); // n’s ineligible Children

14 if (n.children. size > 1) // Split

15 if (ec. size = 0)

16 Add ec. front to p.nodes, add (ec — ec. front) to uec;
17 for (Yuec; : uec; € uec)

18 Create new PathNode, npn, containing Node uec;;

19 Add npn to pathLeaders, insert into Gp;

20 else if (n. children. size == 1)

21 if (ec.size = 0)

22 Add ec. front to p.nodes, add (ec — ec. front) to uec:
23 else

24 Create new PathNode, npn, containing Node uec. front:
25 Add npn to pathLeaders, insert into Gy;

26 end n.children. size if

27 if (ec. size = 0)

28 n = ec. front;

29 uve = GetUnVisitedChildren(n):

30 else

31 uve = @;

32 end while

33 end Type(n) if
34 end vpl for
35 return G,

Fig. 12. Pseudocode for the GeneratePathCompressedGraph() function.

Given a list of storage operations: storageOps

Node sn = storageOps. RemoveFront( );

1

2

3 while (storageOps. size = 0)

4

5 New List of ModuleLocations: potentialMods = 0

6 potentialModLocs = GetLongestFreeModLocs(sn):
7 ModuleLocation ml = GetClosestModLoc(potentialModLocs),
8 if (ml.end < sn.end)
9 Node snEnd = split(sn,ml.end);
10 Add snEnd to storageOps;
11 end if
12 end while
Fig. 13. Pseudocode for the SelectModuleLocations() function.

Fig. 11 presents high-level pseudocode for path binder. The
binder is given a scheduled sequencing graph (line 2); at this
point, each basic node/vertex,V, has a start time-step, stop
time-step and module-type (e.g. mix module, detect module,
etc.), but has not been bound to a particular module location.
lines 3-5 obtain lists of important operation types (inputs,
outputs and storage nodes); lines 7—10 initialize path-based
variables.

Lines 12-14 construct the path-compressed graph, G ,. First,
the initial path leaders are found, which are nodes whose
parent nodes consist exclusively of input/dispense nodes (line
13); nodes with no parents (i.e., dispense nodes) are not
included in this list. In line 14, the path leaders are passed
to the GeneratePathCompressedGraph() function, which, at
a high level, combines as many successive basic nodes as
possible into larger path nodes, resulting in a new graph of
path nodes. This function does not bind nodes to a particular
module. We provide more details of this function in the
following sub-section.

Lines 20-26 carry out all the binding. Line 22 performs a
simple left-edge bind on the non-storage path nodes in G, as

performed in Grissom and Brisk’s previous implementation of
left-edge binding (except it is binding path nodes, instead of
basic nodes) [10]. When a path node is bound to a particular
module location, each basic node the path node contains
is bound to that same module location. Inputs and outputs
are bound (lines 22-23) as in the left-edge binder. Finally,
lines 24-26 bind the storage nodes and complete the path
binding algorithm; these functions are detailed in later sub-
sections.

a) Generating Path-Compressed Graph: In order to
reduce the work load of the binder and eliminate droplet routes
for the subsequent routing stage, the sequencing graph is
compressed such that a single path node contains one or more
basic nodes, as demonstrated in Fig. 10(b) and (c). Eligible
basic nodes can be compressed into a single path node if they
form a path through the original sequencing graph (no gaps
of time between basic nodes); an eligible node is a basic node
that has not already been added to a path node in G,, has
the same resource-type as its path-parent, and is not an I/O
or storage node. Ineligible nodes cannot be compressed into
the current path node because, although they have not been
added to G, they are of a different resource-type than their
path-parent or are storage nodes. During the scheduling phase,
non-storage operations are assigned a specific resource-type;
since storage is extremely flexible, it is scheduled based on
examining the number of free resources, but it is not assigned
a specific resource-type. Thus, storage nodes are not path-
compressed at this point because they will be broken up at a
later stage to fit into any available resources.

Fig. 12 presents pseudocode for the path compression algo-
rithm (Fig. 11, line 14). The resultant graph, G, is composed
of a number of path nodes which each contain one or more
basic nodes that can be bound to the same module location.
Lines 4-34 show that each path leader is iterated through
until there are no more path leaders, at which point the entire
assay will be compressed. Each path leader (a path node) will
initially contain exactly one basic node, which is examined in
lines 5 and 6. Since storage is the most flexible operation and
is designed to fit wherever other operations are not located,
they are added to a new path node and added to the graph
with no compression (lines 6-8).

Lines 9-33 attempt to traverse a path and compress eligible
basic nodes into a single path node; lines 11-32 show that
a path can be traversed while there are unvisited basic nodes
(i.e., basic nodes not yet added to a path node in G,) in the
most-recently-added node’s (n’s) children. If n has multiple
children (e.g., split operation), then only the first eligible child
(randomly selected) is added to the current path node, p;
a new path node is created for each remaining eligible and
ineligible child and inserted into G, and the path leaders list
(lines 14-19). Similarly, if n only has one unvisited child, the
child is either added to the current path node, p (if eligible),
or used to create a new path node (if ineligible), as seen in
lines 20-25. This loop (lines 11-32) continues until there are
no more eligible children on the path.

b) Selecting Storage Module Location: Fig. 13 presents
pseudocode to show how module locations are selected for
storage nodes. Given a list of storage operations, lines 3—12
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I Given lists of storage nodes, sorted by module location: storageByModLoc/ |
2 List of holder nodes, sorted by module location: holdersByModLoc[ | = @
3

4 for each (ModuleLocation ml)

5 List holders = holdersByModLoc.at{m/)

6 List stores = storageByModLoc.at(m!)

7 sortByStartThenEnd(stores)

8

9 for each (s in stores)

10 if (no holders in holders)

11 (a)

12 else // holders already exist

13 int rStart = s.start /{ Running start for s

14 while (rStart < s.end)

15 Node h = holders.getNext();

16 if (rStart < h.start) // Starts before h

17 if (s.end £ h.start) // s & h do not overlap

18 (b)

19 else // 5 & h overlap

20 (c)

21 else if (rStart == h.start) // Starts at same time as h
22 if (s.end < h.end) // s ends in middle of h

23 (d)

24 else //sendsath

25 (e)

26 else // s ends after h

27 (f)

28 else if (h.start < rStart < h.end) // Starts in middle of h
29 if (s.end > h.end) // s extends past h

30 (e)

31 else if (s.end == h.end) // s ends with h

32 (h)

33 else if (s.end < h.end) // 5 encompassed by h

34 (i)

35 else if (rStart = h.end AND holders.hasNext() == false)
36 /{ rStart starts as or after h ends AND no more holders
37 if (rStart > s.start) // Part of 5 already bound

38 (11]

39 else

40 (k)

41 end rstart if

42 end while

43 end holders if

44 end stores for

45 end ModuleLocation for

Fig. 14. Pseudocode for the BindStorageToHolders() function (Fig. 11, line
26) with references (a)—(k) to pictorial pseudocode transformations in Fig. 15.

loop through and choose a module location for each storage
operation, sn. In line 6, GetLongestFreeModLocs() examines
all of the module locations and returns a list of one or more
module locations with the longest uninterrupted availability,
starting at sn’s starting time (sn.start). The main idea is to
keep a droplet stored in a single location as long as possible
since this minimizes the number of times a droplet needs to
be routed. Next, in line 7, if there is more than one potential
module location to choose from, GetClosestModLoc() selects
the module location with the minimum distance to the storage
node’s already-bound parent or child, reducing any necessary
routing lengths. Distance is computed as the Manhattan Dis-
tance between the top-left corners of the potential module
location and the parent’s/child’s module location. Finally, if
the selected module location was not free long enough to cover
the entire length of sn, it is split and the second half is added
to storageOps to be bound later (lines 8§8-10).

c) Binding Storage To Holders: Binding of storage
nodes into storage holders is performed differently than in the
left-edge binder. In the left edge binder, the minimal number
of storage holders is created each time-step and each bound to
a free module location (first free location in the list is selected

Time - Time -~
(a) h
[ s
RS RS
(b) [ h | here || h |
| : s
RS RS
(c) hPre h |
H sPre |s|
RS RS
(d) h h| hEnd |
s S
RS “Trs
(e) h h
5 s
RS RS
(f) h_ ] [h
3 | s
(g) [h] hEnd
sBeg | s I
RS RS
(h) [n [h] hEnd
s S
RS RS
(U h | | h] hEnd | hEnd2 |
s s
RS RS
(i) h | hpPost
s
RS RS
(k) [h] [h] hPost
| : s
RS RS

Before Binding After Binding

Fig. 15. (a)-(k) Transformations that take place at the corresponding times
in the pseudocode in Fig. 14. RS denotes the rStart (running start) variable.
An alignment of a storage (gray box) and holder (white box) node indicate
that the storage node is bound to the overlapping holder node (after binding).

if there is more than one available location); storage nodes
(droplets) are then bound to a storage holder’s location with
no concern to the droplet’s location. Path binder differs in
that it first binds each storage node to a particular module
location, and then creates storage-holders to accommodate
these storage nodes. Thus, if resources permit, it is possible to
have more than one module location being used to store less
than s,, droplets. This uses more space (which would otherwise
be unused) in exchange for spatial locality, which results in
shorter droplet routes in the next stage.

Fig. 14 presents pseudocode for the BindStorageToHold-
ers() function (Fig. 11, line 26). Instead of adding further
pseudocode, Fig. 14 contains links (a)—(k) to pictorial trans-
formations (Fig. 15) to more clearly explain the binding
algorithm. Storage nodes are passed in and are already sorted
by module location (line 1); holders are created by examining
the storage nodes in one location at a time (line 4).

The algorithm attempts to bind each storage node, s, to any
of the already-existing holders, / (lines 9—44), already created
for that location (initially there are none). It does this by
examining each holder’s position relative to the storage node
currently being examined. For example, case (a) shows the
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case where there are no holders for that module location; thus,
Fig. 15 illustrates that a new holder, A, is created to contain
s. Lines 12-43 detail how storage is handled when there
are holder nodes in existence. In these cases, s may overlap
portions of one or more holders, and thus, the algorithm binds
portions of s, from s.start to s.end, until the entire storage node
is bound (possibly being split in the process) to some number
of storage holders. Fig. 14 shows that we hold a running-start
variable (rStart) to denote that any portion of a storage node
before rStart has already been bound. Fig. 15 shows how much
of the storage node is bound in each case by examining the
before/after positions of the running-start (RS).

Examining Figs. 14 and 15, (b) and (c) handle the cases
when a storage node’s unbound portion begins before a holder;
(d)—-(f) handle the cases when a storage node’s unbound
portion begins at the same time as a holder; (g)—(i) handle
the cases when a storage node’s unbound portion begins in
the middle of a holder. Finally, (j)—(k) handle the cases when
the storage node’s unbound portion starts after the last holder.
If none of these cases apply, s is compared against the next
holder until a case does apply.

In Fig. 15, storage and holder nodes named with suffixes
(Pre, Beg, End and Post) show that new nodes were created
during the binding process. In these cases, the original nodes in
question (s or #) may have been shortened in length. A node’s
suffix (e.g., “Pre” in hPre) describes its position in relation
to the original node with the name of the prefix (“A” in hPre).
For example, as seen in Fig. 15(b) [Fig. 15(j)], after binding,
a new node called & Pre(h Post) is created and exists entirely
before (after) h’s original position before binding; likewise, a
node called /h Beg(h End) is one that spans a time-range, after
binding, which was originally spanned by the beginning (end)
of the prebound 4.

C. Routing

To complete the synthesis flow, we use a simplified version
of an existing droplet router by Roy et al. [22]. We created a
number of routing methods that restricted routes to the cells in
between modules, but found that Roy’s maze-routing approach
produced shorter routes in only a few more milliseconds of
computation time compared to the alternatives. As in Roy’s
router, we use Soukup’s fast maze router [23] to produce
sequential routes for droplets and then compact the routes
together, adding stalls in the middle of the routes to avoid
droplet interference.

The routing algorithm by Roy et al. that we have imple-
mented here, does not support rip-up and reroute. We chose
this algorithm because it offers a good trade-off between
runtime and route quality. Roy’s algorithm works in two
phases: 1) compute routes for all droplets using a variation
of Soukup’s VLSI routing algorithm (initially assuming that
droplets are routed one-by-one) and 2) use a greedy algorithm
to compact the droplets so that they can be routed concurrently
without interfering. The routes are compacted in time, not
space, and the pathways chosen in step 1) are never changed.

In principle, step 2) could be improved by adding the
capability to rip-up and reroute certain droplet pathways,
but that would require a longer runtime. Since our focus
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Fig. 16. (a) Interference region (IR) for a droplet at the beginning of a
droplet-actuation cycle. (b) IR at the end of a cycle.
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Fig. 17. Droplets 1 and 2 are traveling from source 1 and 2 (S1/S2) to target
1 and 2 (T1/T2), respectively. The red and blue (blue also underlined for
clarity) numbers are time-stamps for droplets 1 and 2, respectively). The top
scenario shows that deadlock can occur when routes 1 and 2 are compacted
and stalls are added mid-route. The bottom scenario shows that both routes
are safely completed if droplet 2 stalls at its source location until droplet 1
is safely out of the way.

is online synthesis, where a premium is placed on runtime,
we determine Roy’s algorithm to be a reasonable solution.
In the online context, the extra time spent performing these
computations would be greater than the savings in execution
time that is obtained from shorter routes.

The router receives a scheduled and placed DAG, from
the placer. Throughout the routing process, all droplets in
motion must maintain static and dynamic spacing constraints
to prevent interference, as shown in Fig. 16. Droplet routes
are computed one routing sub-problem at a time. As seen
in Fig. 17, a routing sub-problem (or phase) is the problem
of routing a number of droplets from their source (input or
module) to their destination (module or output); routing sub-
problems occur between the end of one time-step and the
beginning of the subsequent time-step.

During a routing sub-problem, blockages are created and
must be avoided. For a particular routing sub-problem ¢,
any persisting module, m, that is performing operations (i.e.,
m.Start < t < m.End) is considered a blockage (includ-
ing its interference region). In addition, for each droplet d;,
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the source and target (including their interference regions, a
3x3 blockage) for any droplet d; also being routed during the
same sub-problem are considered as blockages for d;. Due to
the virtual topology, the sources/targets for all d; will never
interfere with d;, and thus, deadlock-freedom is guaranteed.

For a specific sub-problem, individual routes are first com-
puted for each droplet using Soukup’s fast maze routing
algorithm [23]. Soukup’s maze router works by routing around
blockages; it routes straight to its destination until it hits a
blockage (e.g., existing module or droplet), at which point it
attempts to route around it.

We do modify Roy’s router, however, taking advantage of
the virtual topology to avoid deadlock (i.e., when droplets form
a dependency cycle and cannot move forward until one of the
droplets in the dependency cycle concedes).

Route compaction is the process of taking a number of
sequential routes and causing the droplets to move in parallel
at the same time. However, the original routes are not created
with concern to other droplet routes and caution must be taken
when compacting to prevent routes from intersecting in time
and space. When compacting routes, droplets may not enter
any cell that is adjacent to any other droplet or the droplets
will interfere (merge) with one another. To prevent this, a
static interference region (IR) is created around each droplet
at the beginning of each droplet-actuation cycle, as seen in
Fig. 16(a). As a droplet moves from one cell to the next,
the IR is stretched dynamically to include the union of the
static IRs of the beginning and end cells [see Fig. 16(b)].
In general, a droplet may not enter any other droplet’s IR
while routing. Static and dynamic droplet interference rules
are formally defined in [29].

It is possible that deadlock may occur during compaction if
two (or more) droplets are waiting for each other to move. In
this case, stalling cannot resolve the deadlock (e.g., consider
the case where two droplets are attempting to enter the same
cell but cannot because it would cause a head-on collision).

Roy’s router attempts to recover from deadlock by moving
one of the droplets backward [22]. We simplify the process by
taking advantage of our virtual topology. With our module syn-
chronization, described in Section III-A, droplets have desig-
nated sources (module exits) and destinations (module entries)
that do not interfere with any other sources and destinations
in a given time-step (i.e., a droplet source will never interfere
with another droplet’s destination). Thus, a droplet can stay
at its source as long as necessary, until all other droplets are
safely off its path, and then commence its route. By employing
this method, we are guaranteed to avoid deadlock.

With this in mind, the router keeps track of the number of
stalls added to any route r. If the number of stalls added to
route r reaches some threshold, stallThresh, all of the stalls
added to any route thus far in the sub-problem are removed.
Then, the entire sub-problem is compacted again, except this
time, stalls are added to the beginning of the routes instead
of the middle. In this case, droplets do not leave the safety
of their source cell until they are guaranteed an unobstructed
path in space and time to their destination.

Consider Fig. 17 in which droplets 1 and 2 are being routed
from their sources (S1 and S2) to their target cells (T1 and T2).

TABLE I
ASSAY BENCHMARK TABLE

Benchmark Number of Operations Dis!:uense
Inputs | Outputs | Detects | Mix/Split Time
PCR 8 1 0 7 2
InVitrol 8 4 4 4 2
InVitro2 12 6 6 6 2
InVitro3 18 9 9 9 2
InVitro4 24 12 12 12 2
InVitro5 32 16 16 16 2
ProteinSplitl 12 2 2 12 2
ProteinSplit2 24 4 4 26 2
ProteinSplit3 48 8 8 54 2
ProteinSplit4 96 16 16 110 2
ProteinSplit5 192 32 32 222 2
ProteinSplit6 384 64 64 446 2
ProteinSplit7 768 128 128 894 2

Table of Benchmarks Showing the Number of Different Operation Types and
Dispense Times

As seen in the top scenario, if the routes start at the same time,
deadlock will occur at cycle 3 as droplet 1, at cell (4, 4), and
droplet 2, at cell (7, 4), cannot move forward without merging.
No amount of mid-route stalls will resolve this deadlock since
they are heading straight toward each other; it is not a matter
of allowing one droplet to pass. The bottom scenario shows
that if droplet 2 is allowed to stay in its source until droplet
1 is safely off its route, droplet 1 can reach its target. Since
the cells around S2 are considered as blockages to droplet 1,
droplet 2 is safe to wait at S2 as long as necessary because
droplet 1 will never attempt to pass through that area, even if
its destination is to the east of S2.

Adding stalls to the beginning of a path will always work
and will never result in deadlock, as can occur when inserting
stalls mid-route; however, we discovered empirically that
inserting stalls mid-route tends to yield shorter routes, and
rarely results in deadlock. Thus, we employ the mid-route-
stall compaction method first and revert to the preroute-stall
compaction method only when a deadlock occurs.

V. EXPERIMENTS
A. Benchmarks

We used three benchmark families: PCR, in-vitro diag-
nostics, and a protein assay (see Table I), whose base
DAGs have been made publicly available by researchers at
Duke University [25]; we also used the provided module
libraries to obtain operation timings. We used a 4 x 2 mixing
times (3s) for all PCR mixing operations. In-vitro diagnostics
is a family of assays that mixes and detects up to four samples
with four reagents (e.g., up to 16 mix-and-detect operations).
We use the five in-vitro assays, along with mixing/detection
times, as listed in [24, Table IJ.

We also use the protein-split benchmark, described in [11],
which represents the traditional protein assay with varying
levels of splitting from one to seven (the traditional protein
has three levels, with 2°=8 output droplets); all operation
timings are the same as the protein assay. These assays are
used as large problem instances to push the synthesis flow’s
capabilities. For the protein assay, we used 4 x 2 dilution times
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(5 s) and 4 x 2 mixing times (3 s) for all dilute and mixing
operations, respectively; all 2-input, 2-output dilute operations
in the protein assay were implemented using a mix operation,
followed by a split operation, which took 5 s in total.

We assume a droplet actuation frequency of 100Hz [34]
and all droplet input times are assumed to be two seconds in
length. The Protein Split assays in Experiments 1 and 2 were
all scheduled using path scheduler [11]. All assays in Experi-
ment 3 were scheduled with list scheduler [26]. Furthermore,
although the virtual topology uses 4 x 2 mix and dilution
times, it still uses 4 x 3 modules for module synchronization
purposes; the 4 x 2 module was the largest/fastest module
described in the Duke benchmark document that would fit
inside our standard 4 x 3 module [25]. The free placer in
Experiment 3 uses 4 x 2 mixing times in a 4 x 2 module since
it does not need the extra space for module synchronization.

B. Implementation Details

All code was implemented in C+ +using the University of
California, Riverside’s (UCRs) DMFB Synthesis Framework
[9]. We evaluated performance on a 64-bit Windows 7 desktop
PC, with 4GB of RAM and an Intel Core i7™ CPU operating
at 2.8 GHz. This platform represents a typical use case for a
controlled laboratory setting.

C. Experiment 1: Left-Edge Binding Versus Path Binding

We first compared the left-edge binder with the path binder,
both described in Section IV-B, on a 15W x 19H DMFB with
the basic topology described in Fig. 5 with 4 x 3 modules such
that 6 modules could safely be placed onto the DMFB. The
objective was to experimentally verify that the use of path
binder leads to shorter routes and algorithmic times, despite
the seemingly-added complexity of path binder and its prepro-
cessing computations. We evaluate the two algorithms on the
ProteinSplit family of assays, as they provide increasingly-
larger problem instances as the number of split-levels is
increased from 1-7 (14 nodes to 1022 nodes). Table II shows
the results for left-edge and path binding. For ProteinSplit 1-5,
the problem instances are too small to really see a difference
in computation time. However, as the assays grow larger
(ProteinSplit 6 and 7) path binder’s improvements are clearly
seen since it produces a valid binding 10 x faster than the left-
edge binder.

Table II also shows the total length of the droplet routes
generated by the router stage (described in Section IV-C) when
given the bindings for each benchmark. The results show that
the routing lengths are shorter for all but the smallest bench-
mark (ProteinSplitl), saving up to 3.8 s on the largest assay.
It should also be noted that, although not seen in Table II, the
computation time for routing is decreased due to the spatial
enhancements of path binder; from ProteinSplit 1-7, the router
saves from 2 ms to 6.4 s, respectively, further adding to the
time savings when using pathbinder. For the remainder of this
paper, we use path binder as our binder of choice.

D. Experiment 2: Topology Exploration

Here, we explore several topological configurations and the
effects on routing. Fig. 18 shows three different configurations

TABLE I
LEFT-EDGE BINDING VERSUS PATH BINDING

Left-Edge Binding Path Binding

Benchmark Comp. Time RL Comp. Time RL

(ms) (s) (ms) (s)
ProteinSplit1 0 1.10 0 1.22
ProteinSplit2 0 342 0 3.18
ProteinSplit3 0 7.57 0 6.83
ProteinSplit4 1 17.02 0 14.23
ProteinSplit5 3 36.99 1 29.68
ProteinSplit6 21 73.49 2 57.43
ProteinSplit7 99 147.39 9 108.76

Results showing the route lengths (RL) and computation times for left-edge
and path binding performed on seven ProteinSplit (PS) benchmarks on a
15Wx19H DMFB.
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Fig. 18. Three different topologies showing modules stacked vertically
(2W x4H). (a) No horizontal routing channels (HRC, the white cells between
modules) between modules. (b) One HRC between every two modules.
(c) One HRC between every module.

with horizontal routing channels (HRCs) interspersed at vary-
ing regularities between vertical groups of modules. An HRC
is a group of contiguous horizontal cells that extends from
side to side and will never be occupied by a module or its
interference region. Fig. 18(a) shows the tightest configuration,
which is the case where there are no HRCs. Fig. 18(b) and (c)
illustrate the cases where there is a single HRC between every
two modules and every module, respectively. The design seen
in Fig. 18(c) allows for maximum routability and provides the
fewest blockages (at the cost of using more space). Fig. 18(a)
is the tightest design (with the most blockages for routing);
Fig. 18(b) presents a compromise between the two.

In Tables III and IV, we show how the topologies affect
schedule length and routing times. Table III presents results
for the ProteinSplit assays when the DMFB size is fixed.
This shows that certain topologies, which make less room
for routing, can fit more modules in some instances. For
example, as seen in Table III, the tight topology with no
HRCs [similar to that seen in Fig. 18(a)] could fit ten modules
on a 15W x 23H DMFB, while the topology with one HRC
between each module [similar to that seen in Fig. 18(c)] could
only fit six modules. The results are clearly seen in that, as
the number of modules increases, the schedule lengths are
reduced.

Table IV gives results for the ProteinSplit assays when the
number of resources are fixed (eight modules), in order to
show the results on routing. In this case, the DMFB topologies
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TABLE III
SCHEDULE LENGTH (S) FOR FIXED-SIZE DMFB (15W x 23H)

HRC # Mods ProteinSplit (PS) Benchmark

Spacing PSI | PS2 | PS3 | PS4 | PS5 | PS6 | PS7
None 10 55 | 70 | 95 | 155 | 270 | 505 | 987
SV, ;Y

Every 2 8 55 | 70 [ 108 | 175 | 317 | 609 | 1213
Mods

Every

Mod 6 55 70 119 218 418 864 1,796

Results showing the number of modules that can fit and the resultant schedule
lengths of three topologies with different horizontal routing channel (HRC)
spacing; each topology is placed onto a 15W x23L DMFB.

TABLE IV
TOTAL ROUTE LENGTH (S) FOR FIXED-MODULE-COUNT (EIGHT MODS)

HRC Spacing
Benchmark Les:;tehdis) None Every 2 Every Mod
’ i Mods
ProteinSplitl 55 1 1 1
ProteinSplit2 70 3 3 3
ProteinSplit3 108 7 8 9
ProteinSplitd 175 15 16 17
ProteinSplit5 317 29 30 33
ProteinSplite 609 61 62 69
ProteinSplit7 1213 123 124 136
15W=19H 15W=21H 15W=25H
(285) (315) (375)
DMFB Dimensions (¥ Electrodes)

Results showing the sizes of the DMFBs and resultant route lengths for three
topologies with different horizontal routing channel (HRC) spacing; each
DMEB is sized to fit eight modules with the given topology.

and sizes are exactly those seen in Fig. 18. The purpose of the
HRCs is to create shortcuts for droplets that must otherwise
travel all the way to the north/south border and around the
entire stack of modules to get to its destination (the extreme
cases) if all modules are busy. As seen in Table IV, the
most compact topology (with no HRCs) produces the shortest
overall routes for every benchmark. Thus, these results show
that the elimination of occasional worst-case routing situations
does not offset the constantly shorter distances droplets travel
between modules in the most compact topology with no HRCs.
Furthermore, as stated in Section III, droplets can cut through
inactive modules (essentially creating a temporary HRC) to
reduce routing times. Hence, Tables III and IV show that
the topology with no HRCs [Fig. 18(a)] uses the least space
(which can lead to greater utilization and shorter schedules)
and yields the shortest routing lengths.

E. Experiment 3: Comparison To Fast Free Placer

In this section, we highlight the key benefits of the virtual
topology and binder by comparing Path Binding to a fast
free placement algorithm known as Keep All Maximal Empty
Rectangles (KAMER) placement [4], [16]. The KAMER
placer works by quickly computing all the maximal empty
rectangles (MERs) (i.e., the empty rectangles that cannot be
contained within another empty rectangle) and then placing
a module within one of the MERs. We chose KAMER
placement as a fair comparison because it is very fast and
used in other online synthesis works [3].

We compare the KAMER placer (KP) to path binding (PB)
with the virtual topology seen in Fig. 18(a) (no HRCs), both on

an identical 15Wx19H DMFB, such that eight mixers could
be accommodated. Both synthesis flows used list scheduling
[26] and Roy’s maze router [22], described in Sections IV-A
and IV-C, respectively. The schedules, computed as input to
the KAMER placer and path binder, were identical.

We experimented with two and three storage droplets
(PB_2/KP_2 and PB_3/KP_3) per module for the two meth-
ods/flows. For PB_2, storage is handled as described in Fig. 8
(storage enters via I1/12 and leaves via O1/02). For PB_3,
when three droplets were allowed to be stored per module, we
allowed the router to break the module I/O synchronization
rules by allowing the third droplet to enter via Ol; the
two droplets that entered via Il and I2 remained there and
also exited via Il and I2. All modules used by PB were
4x3 cells; KP was able to use smaller 4x2 modules since
it does not need to enforce droplet synchronization rules.
For storage, KP_2/KP_3 places two/three single-cell (1x1)
modules (which is the common storage-module size for free
placement [26]) instead of storing two/three droplets in a larger
4x2 mixing module.

Table V shows the results for ten runs of PCR, InVitrol-5
and ProteinSplit 1-6 for PB and KP for two and three storage
droplets per module; PB_2 is the solution presented in this
paper. The first section shows that, in 10 runs, PB_2 has no
failures until ProteinSplit 6, when list scheduling fails because
there are not enough resources for it to schedule such a large
assay. PB_3 fails completely on routing on ProteinSplit 4-6.
The third section shows the schedule length and total assay
time (which includes routing); this section shows that PB_2
and PB_3s schedules did not differ until ProteinSplit 4-6.
Thus, the scheduler did not need 3 droplets per module until
ProteinSplit 4, showing that routing failed for PB_3 as soon
as the system attempted to actually bind three droplets to a
single module.

KP_2 shows that, even with only two storage droplets per
mix module being scheduled, placement and routing errors oc-
cur often; KP_3 shows similar results. Thus, although allowing
for three droplets per module produces better schedules, it is
clear from the results that doing so yields more congestion,
making it difficult to produce valid routing solutions for both
binding and free placement. This suggests that it is unwise
to attempt scheduling more than two droplets per (4x2/4x3)
mix module.

The middle section of Table V shows the synthesis times
for placement and routing of the first successful run of the
ten runs, if any existed. The results show that both placers are
extremely fast (milliseconds), with PB being slightly faster or
equal to KP in all comparable instances, making it suitable for
online synthesis. Finally, as seen in the third section of Table V,
when comparing PB_2 versus KP_2 and PB_3 versus KP_3
(since both pairs have the same schedule), PB produces overall
shorter routing times than KP since it reduces the number
of droplets that need to be routed by binding contiguous
operations to the same module (location) when possible.

Overall, Table V supports our decision to limit storage to
two droplets per module and shows that, even though more
droplets could be placed in our modules, they cannot be
reliably routed. The results also demonstrate that, although KP
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TABLE V
PATH BINDING (PB) WITH VIRTUAL TOPOLOGY VERSUS KAMER PLACER (KP)

# Scheduling/Placement/Routing Place/Route Comp. Time (ms) Schedule/Assay Length (s)
Assay Failures in 10 Runs (First Success) (First Success)

PB 2| PB3 KP 2 KP 3 PB2|PB3 | KP2| KP3 PB 2 PB 3 KP 2 KP 3
PCR - - - - 0/0 0/0 0/0 0/0 12/12.44 12/12.44 | 12/12.74 | 12/12.79
InVitrol - - - - 0/0 0/0 0/0 0/0 15/ 15.64 15/15.64 | 15/1649 | 15/16.48
InVitro2 - - - - 0/1 0/1 0/1 0/1 19/20.28 19/20.28 | 19/20.79 | 19/20.93
InVitro3 - - - - 0/1 0/1 0/2 0/2 19/20.49 19/2049 | 19/21.76 | 19/21.9
InVitrod - - 1 RF 1 RF 0/2 0/2 0/2 0/2 23/25.01 23/25.01 | 23/26.35 | 23/26.31
InVitros B - 1 RF 1 RF 0/3 0/3 0/4 0/4 29 /31.48 29 /3148 | 29/33.54 | 29/32.84
ProteinSplit] - - - - 0/1 0/1 0/2 0/2 53/53.73 53/53.73 | 53/54.78 | 53/54.76
ProteinSplit2 - - - - 0/4 0/3 0/4 0/5 63/ 64.83 63 /64.85 | 63/67.95 | 63/67.89
ProteinSplit3 - - 3PF,6RF | 4PF,S5RF | 0/8 0/8 1/11 [ 1/10 84 / 88.85 84 /88.81 | 84/94.12 | 84/94.33
ProteinSplit4 - 10 RF 10 PF 10 PF 1/27 - - - 215/223.21 175/ - 215/ - 175/ -
ProteinSplit5 - 10 RF 10 PF 10 PF 2/76 - - - 486/513.08 363/ - 486/ - 363/ -
ProteinSplit6 | 10 SF | 10 RF 10 SF 10 PF - - - - -/ - 725/ - -/ - 725/ -

Results showing path binding (PB) Versus KAMER placement (KP) with two and three storage droplets per mixing module on a 15W x 19L DMFB. The first
section shows the number of scheduling/placement/routing failures (SF/PF/RF) in ten runs (’-’ means no failures). The second section shows the computation

5

time of placement and routing for the first successful run (’-

means all ten runs were failures and no timing was measured) of each flow. The third section

shows the schedule length and the total length of the assay (which includes the routing time).

uses less space for modules, the chaotic and super-compact
placements make it difficult-to-impossible for routing. We
should note that we also tried a version of KP which left addi-
tional space around modules to improve routability; however,
this configuration of KP performed worse than the version
presented in Table V, often failing on placement because there
was not enough room to randomly place the modules freely
with the extra space.

VI. CONCLUSION

The online synthesis flow introduced in this paper can run in
real-time on a typical laboratory desktop system, as typified by
the Intel i7 processor used in our experiments. Empirically, this
paper has shown that a virtual topology coupled with a binding
algorithm can greatly simplify the placement problem, ease
the router’s job and lead to better droplet routes. We present a
basic left-edge binder and a more-intelligent path-based binder
which bind assay operations to module locations. The first
simply computes a valid binding solution, while the latter takes
spatial and temporal locality into account to produce better
solutions.

The topology is designed to facilitate basic microfluidic op-
erations and ensure that any droplet’s source-destination pair
can be quickly computed without fail on the first try. These
features are vital in an online environment where recomputing
synthesis stages will be felt by the user as he or she waits. We
demonstrate that a compact topology produces better results
both in scheduling and routing than sparse topologies designed
to allow more room for routing. We also show tiling modules
vertically, with a width-to-height ratio slightly below zero,
yields the best routing results.

Our future work will extend the online synthesis flow to
account for control flow operations that cannot be predicted
at compile-time, including variable-latency assay operations,
and runtime fault detection and recovery; of particular interest
is the ability to dynamically reconfigure the virtual topology
when permanent errors are detected; when this occurs, the on-
line flow will be invoked to resynthesize the assay at runtime.
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