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a b s t r a c t

This paper describes a publicly available, open source software framework designed to support research
efforts on algorithms and control for digital microfluidic biochips (DMFBs), an emerging laboratory-on-
a-chip (LoC) technology. The framework consists of two parts: a compiler, which converts an assay,
specified using the BioCoder language, into a sequence of electrode activations that execute out the assay
on the DMFB; and a printed circuit board (PCB) layout tool, which includes algorithms to reduce the
number of control pins and PCB layers required to drive the chip from an external source. The framework
also includes a suite of visualization tools for debugging, and a collection of front-end algorithms that
generate mixing/dilution trees for sample preparation.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A digital microfluidic biochip (DMFB) is an emerging micro-
fluidic technology that manipulates discrete droplets of liquid on a
2-dimensional electrode grid [62]. DMFBs are poised to enable
fully integrated laboratories-on-a-chip (LoCs), which have the
potential to miniaturize and automate many chemical and bio-
chemical reactions, with applications to fields such as drug
discovery, heathcare and public health, environmental monitoring,
and many others. Over the past decade, there has been a
significant effort to develop DMFB technology and fabrication
processes [14,27,38,55,58]; meanwhile, a small cadre of computer
scientists and engineers have worked to develop techniques to
program, control, and automatically optimize DMFB architectures.

Despite these fundamental research efforts, very little software
has been publicly released. Researchers who work on DMFB
compilation introduce new algorithms every year, but these
algorithms are developed in isolation, and there appears to be
no interoperability between the implementations. Ideally, the
algorithms would be compatible with one another and widely
disseminated, which would eliminate the need for research groups
to implement each other's algorithms to facilitate experimental
comparisons. Moreover, it is difficult to identify synergies between

algorithms published by different research groups that have not
been tested together. Further, both paper writing and software
development is prone to human error; and pseudocode in one
paper may not precisely match the implementation, or may omit
key details. Lastly, researchers who implement algorithms based
on pseudocode written by others may inadvertently implement
certain steps incorrectly, potentially skewing their experimental
results.

To address these concerns, this paper describes in detail an
open source DMFB compiler and printed circuit board (PCB)
synthesis tool suite developed at UC Riverside. The framework
employs well-defined internal data structures and interfaces
between each step of the compilation and synthesis process.
Several algorithms have been implemented and tested for each
stage. The software described in this paper has been released
publicly and is available for non-commercial use at [26,73].

The compiler converts biochemical reactions specified using a
domain-specific programming language into an executable format
appropriate for DMFBs, while the PCB synthesis tool optimizes the
control interface and PCB layout. In addition to the core algorith-
mic features listed above, the framework also includes:

� A software tool that generates mixing and dilution trees for
sample preparation.

� Extensive visualization tools that create high-quality graphical
output after each step; in our experience, these tools have
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proven invaluable for debugging and comparison, and we
believe that they will provide similar value to other researchers
as well.

� An execution interface to control a direct addressing [62] or
active matrix [27,58] DMFB through a microcontroller that
communicates with a host PC via USB. This enables direct
execution of biochemical reactions on the chosen target device.

We envision three classes of users for the proposed framework:
(1) DMFB designers will leverage the back-end synthesis tools to
produce optimized PCB layouts, thereby reducing the design,
fabrication, and testing costs for their devices; (2) computer
scientists and engineers will disseminate and compare optimiza-
tion algorithms; and (3) biochemists and bioengineers will com-
pile and execute biochemical reactions in their laboratories,
thereby increasing scientific productivity through automation.
We expect these contributions to be invaluable as DMFB technol-
ogy evolves over the next decade.

2. DMFB technology overview

Fig. 1 illustrates DMFB technology and the process of droplet
transport via electrode actuation. The underlying micromechanical
phenomenon that enables droplet transport is called elecrow-
etting-on-dielectric (EWoD), in which a hydrophobic dielectric
layer insulates the liquid droplet from the electrodes. Fig. 2 shows
the basic instruction set of a DMFB, which consists of five
operations: droplet transport, splitting, merging, mixing, and
storage. Additional operations can be realized by adding external
devices to the device such as heaters [45], optical detectors
[47,87], integrated sensors [13,57,68], etc.

Fig. 3 illustrates the algorithmic stages of the DMFB compiler
and PCB synthesis toolflow. The input to the framework is a
biochemical reaction to perform, which is specified as a directed
acyclic graph (DAG). One fundamental limitation of this input, as
well as the framework in its current form, is that control flow
operations are not supported. Future work will integrate support
for real-time decision-making based on sensory feedback, fault
tolerance and error recovery, etc.

The compiler's output (Fig. 4) is a linear state machine (a Moore
machine): each state outputs a bit-vector, where the bits that are
set to ‘1’ correspond to the subset of electrodes that are activated
during each actuation cycle. A typical actuation cycle lasts for
10 ms, as reported in previous literature [60].

The compiler must solve three interdependent NP-complete
problems: scheduling [69], placement [70], and routing [7]. The
scheduler determines the time steps at which each biochemical
operation occurs, while satisfying droplet dependency constraints
as well as physical resource constraints of the target device. The
placer determines the location on the 2D electrode array where
each operation is performed as the reaction progresses over time.
The router ensures that droplets are transported from their start/

stop points at appropriate times during execution of the chemical
reaction, while ensuring that droplets undergoing transport do not
inadvertently collide with one another or any other ongoing
operations on the chip. The router may also introduce wash
droplets to remove residue left by droplets that travel over the
surface of the chip; this ensures that droplets that enter the same
region at different times do not accidentally contaminate one
another and spoil the results of the reaction.

PCB synthesis is composed of two steps: pin-assignment and
wire routing. The simplest pin assignment is direct addressing, in
which a dedicated control input drives each electrode, as shown in
Fig. 5(a). An optimized pin assignment establishes a one-to-many
assignment from control inputs to electrodes, as shown in Fig. 5(b);
moreover, some electrodes may be left unaddressed. Reducing
the number of control inputs reduces the two-dimensional area of
the PCB, which in turn, reduces cost. Both application-specific
[9,33–37,40,41,56,76,79,80,84–86] and general-purpose [20,25,46]
pin assignments have been reported in the literature. Wire routing
connects each control input to the one or more electrodes that it
drives, and determines the number of PCB layers required to realize
the chip; reducing the number of layers also reduces cost. PCB
routing for pin-constrained DMFBs is a form of escape routing. Fig. 6
shows application-specific and general-purpose pin assignment and
wire routing solutions.

3. Framework input specification

As shown in Fig. 3, the input to the framework is a DAG, in
which vertices represent chemical operations and edges represent
the transfer of droplets between operations. In the preliminary
version of the framework, the user specifies the DAG by writing a
text file, which is somewhat tedious and cannot effectively scale to
large protocols with hundreds or thousands of operations. To ease
the burden of programmability, we introduce two new input
specification options here.

3.1. BioCoder language and compiler

BioCoder is a domain-specific language for biochemical reac-
tion specification developed at Microsoft Research, India [1].
BioCoder's original purpose was to standardize the specification
and dissemination of chemical reactions in the scientific literature.
Historically, chemists and biologists describe the written account
of a reaction that they have performed using English language
prose, which may be ambiguous or incorrect, depending on the
aptitude of the writer. This stands in stark contrast to computer
science and computer engineering, in which pseudocode of one
form or another is standard for the widespread dissemination of
algorithms.

BioCoder is a Cþþ library that provides functions for a wide
variety of operations performed in chemistry (e.g., measurement,
incubation, etc.). The programmer specifies a reaction using the

Fig. 1. A DMFB is a 2-dimensional planar array of electrodes; (b) a cross-sectional view of a DMFB, showing the ground electrode on top and a droplet sandwiched in-
between; (c) illustration of droplet transport by a sequence of activated electrodes (activation is shown in white).
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Fig. 2. The instruction set of a DMFB consists of five basic operations.

Fig. 3. The DMFB compiler consists of three stages: scheduling, placement, and droplet routing; the PCB synthesis flow adds pin-mapping and wire routing stages.

Fig. 4. The output of a DMFB compiler is a linear state machine in which each state specifies a subset of electrodes to activate at a given time.

Fig. 5. A DMFB is typically mounted on top of a PCB that delivers signals provided by a microcontroller via one or more IC clips. The PCB may also include shift registers that
latch the signals provided by the microcontroller. (a) A direct addressing DMFB presumably requires multiple PCB layers due to the large number of control signals that need
to be routed; (b) a pin-constrained DMFB may require fewer PCB layers due to the reduced number of control inputs.

Fig. 6. (a) Pin assignment and (b) wire routing solutions for an application-specific DMFB designed for the polymerase chain reaction (PCR) [46,86]. (c) Pin assignment and
(d) PCB escape routing solutions for a general-purpose pin-constrained DMFB that can execute and biochemical reaction that can fit within the space provided [52]. Each PCB
routing layer is represented by a different color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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library; the compiler then converts it into a DAG-based intermediate
representation, and outputs an unambiguous step-by-step English-
language description of the reaction, which has the look and feel of a
cookbook recipe. This description can then be copied into a scientific
paper or published online for widespread dissemination.

We modified BioCoder for use with our framework [24]. We
removed all library functions that are incompatible with DMFB
technology (e.g., declaration of solid materials, centrifugation,
etc.). We added a droplet split operation, which was not supported
by BioCoder in its original form. Lastly, we modified the compiler
to convert its internal DAG representation into our text file format
for use with the framework; we did not break the English-text
back-end so dissemination of chemical reactions targeting DMFBs
remains possible. Fig. 7 shows an illustrative example of a DMFB-
compatible BioCoder biochemical reaction and its internal DAG
representation.

We expect to continuously update the DMFB-compatible Bio-
Coder library to support new integrated sensing technologies that
will be developed in the future.

3.2. Automated sample preparation

Sample preparation is an important step in many analytical
chemistry techniques, which are often non-responsive to the
analyte in its in-situ form. Often a sample may need to be diluted
to a desired concentration (or set of concentrations) and/or
possibly mixed with several reagents while doing so. Griffith
et al. [19] and Thies et al. [72] introduced the first sample
preparation algorithms tailored for DMFBs; since 2010, there has
been an explosion of literature on the topic. We have implemented
many, but not all, of these algorithms in a standalone software
package that outputs a DAG in our framework's text file format.
The user specifies the input(s) (e.g., the desired concentration of
one or more output droplets) using a graphical user interface.

Table 1 lists the algorithms that we have implemented to date. In
Table 1, the term CV is shorthand for concentration value, i.e., the
desired concentration of a target droplet. Six of the algorithms that
we have implemented generate a dilution tree that produces one
droplet of a desired CV, using different optimization strategies
[11,19,29,65,66,72]; four more algorithms generate multi-output
DAGs (sometimes, but not always, a forest of trees) that produce

multiple droplets of desired CVs [4,28,30,54]. The aforementioned
algorithms all assume that one sample fluid is diluted with a buffer (a
non-reactive fluid that maintains the pH of the sample fluid during
dilution).

The Generalized Dilution Algorithm (GDA) [67] assumes that the
user requests a sequence of droplets with varying CVs in an online
fashion, i.e., the CV values are not known in advance. Each time the
algorithm produces a droplet with a new target CV, intermediate
droplets that are not used may be generated. In other algorithms,
these droplets would be treated as waste; in contrast, GDA stores
these intermediate droplets opportunistically on-chip, as they can
possibly be used to assist future dilution operations.

The algorithm of Bhattacharjee et al. [6] is optimized to produce
multiple droplets having a linear dilution gradient, i.e., a sequence of
CVs that differ by a constant factor, e.g., 5%, 10%, 15%, 20%, 25%, etc. This
algorithm is optimized specifically for linear dilution gradients, but is
otherwise ineffective for arbitrary sets of target CVs.

Lastly, two algorithms—MinMix [72] and Common Dilution
Operation Sharing (CoDOS) [42]—produce a single droplet of a
desired target CV using multiple reactants for dilution, rather than
just buffer exclusively; the authors of CoDOS also introduced a
multi-target CV variation as well.

4. Framework implementation

This section describes the compiler and synthesis algorithms
that we have implemented and made publicly available within the
framework. We have not implemented all algorithms that have
been published in the literature to date, so this discussion is not
meant to be a comprehensive literature survey. We focus instead
on the software architecture of the framework and briefly sum-
marize the algorithms that are available for use, modification, and
experimental comparison by others.

4.1. Software architecture

Fig. 8 illustrates the software architecture of the microfluidic
framework. Black boxes represent software modules (compiler/synth-
esis tasks) and/or visualization tools; the document boxes represent
human-readable plaintext files that are produced and/or consumed by

Fig. 7. A chemical reaction specified using our modified version of the BioCoder language (left) converted to a DAG (right).
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the software modules that comprise the simulator. Compiler and
synthesis algorithms are implemented in Cþþ , while visualization
tools (described in Section 4.4) are implemented in Java. Each stage of
the framework outputs a human-readable text file, which can be read
as an input to the next stage or a visualization tool. An externally
available, graph-drawing tool, GraphViz [18], can visualize the assay
specification (as a DAG) as it is modified and annotated by the
intermediate steps of the synthesis flow.

The synthesis flow is modular. Each step can execute as a
standalone command-line program, or all steps can execute atom-
ically; in the latter case, output of intermediate files for visualiza-
tion purposes is optional, as each stage can propagate its internal
data structures to its successor. When one or more steps executes
as a standalone program, the synthesis engine uses a built-in
utility class to perform I/O and to construct and destruct all
internal data structures. The utility function performs file I/O in
a manner that is transparent to the user; thus, we do not describe
the syntactical structure of the interface files; our source code
documentation describes the interface files' syntax in detail [73].

Schedules are computed on the granularity of time-steps, which
are typically 1 s for most assays, under the assumption
that routing overhead is negligible. An assay operation must start
at the start of a time-step, and must finish at the end of a time-step.
After scheduling, the assay completion time is not exactly known,
because routing incurs some small, non-negligible overhead. A
routing sub-problem may occur between every pair of time-steps;
within each sub-problem, a subset of the droplets on the device
may need to be transferred from one location to another [71]; the
time required to perform these transfers must be added to the assay
completion time in order to achieve a more accurate result. If the
schedule produces T time steps, then there are Tþ1 routing sub-
problems (the first routing sub-problem involves routing droplets
from input reservoirs to the locations where the first operations are
performed; the last routing sub-problem removes all remaining
droplets from the chip upon completion of the assay). Let L(t)
denote the latency of each time-step, and L(ri) denote the latency of
the solution to routing sub-problem ri. Then the total assay
completion time is TL(t)þL(r0)þ…þL(rT).

Unlike Fig. 3, the pin-mapper is not an official stage of the
framework akin to scheduling, placement, routing, etc. The data
structure that represents assignment of control pins to electrodes in

the array is an internal data structure that is “owned” by the
architecture. The literature on pin-constrained DMFB design is vast,
and includes: (1) pre-computed pin mappings that require specia-
lized scheduling, placement, and routing algorithms [20,25,46]; (2)
“pre-synthesis” array partitioning methods that update the pin-map
during scheduling, placement, and routing [9,33,40,41,56,84–86];
and (3) “post-synthesis” pin assignment algorithms that derive a
pin-map (and, in some cases, a wire routing solution) starting with a
fully-compiled assay [34,36,37,76,79,80,86]. Rather than extending
the framework to include every possible ordering of tasks vis-à-vis
pin assignment algorithms, we set up an initial direct addressing pin-
map before scheduling. Other stages may modify the pin map as
desired, converting the target chip into a pin-constrained design.

4.2. Internal data structures and workflow

When the framework executes the complete compiler and
synthesis flow atomically as a standalone program, the internal
data structures are modified and passed along from one stage to
the next. Each stage has a clearly defined interface with common
I/O format. As shown in Fig. 9, the synthesis engine (class)
maintains an instance of a scheduler, placer, (droplet) router, and
(PCB) wire router. These instances inherit from global classes that
force all algorithms that implement each step to use the same
functions, parameters, and internal data structures for interfaces.
This minimizes the number of framework-level changes that a
user must make to implement a new algorithm.

In Table 2, the synthesis engine includes six internal data
structures, which are passed between stages. Table 2 shows which
synthesis steps read (R) and write (W) these data structures, and
which methods do not access them at all (–). A discussed above,
the pin-mapper (PM) is not an explicit stage of the framework, but
is instead internal to the data structure representing the DMFB
architecture. Pin mapping can modify the architecture (i.e., any
algorithmic decision that alters the assignment of control pins to
electrodes) or the electrode activation sequence (i.e., altering the
pin-map will change which electrodes are activated when a
control pin is activated).

All interface files are human-readable, well-structured text
files. A utility class called Util handles all file I/O, according to

Table 1
Sample preparation algorithms implemented using our framework.

Algorithm Reference Target problem Optimization goal

Binary search (BIN) Griffith et al. [19] Single target CV Reduce waste
Bit scanning (BS) Thies et al. [72] Single target CV Reduce #mix-split steps
Dilution and mixing w/reduced wastage (DMRW) Roy et al. [65] Single target CV Reduce #mix-split steps
Improved dilution/mixing Roy et al. [66] Single target CV Reduce reagent usage and waste
Algorithm (IDMA)
Reactant minimization Huang et al. [29] Single target CV Reduce reagent usage
Algorithm (REMIA)
Graph-based optimal reactant Chiang et al. [11] Single target CV Reduce reagent usage and waste
Minimization algorithm (GORMA)
Min–Mix (MM) Thies et al. [72] Single target CV (multiple reactants) Reduce # mix-split steps
Common Dilution Operation Liu et al. [42] Single or multi-target CV (multiple reactants) Reduce waste
Sharing (CoDOS)
Generalized Dilution Algorithm (GDA) Roy et al. [67] Single target CV from multiple CVs of the same fluid (i) #Mix-split steps, or

(ii) Height of mixing/dilution tree, or
(iii) Number of mixers used

Zero waste linear dilution Bhattacharjee et al. [6] Linear dilution gradient Reduce waste
Gradient
Multi-target Min–Mix Bhattacharjee et al. [4] Multiple target CV Reduce #mix-split steps and waste
Reagent saving mixing Hsieh et al. [28] Multiple target CV Reduce reagent usage and waste
Algorithm (RSMA)
de Bruijn Graph Traversal Mitra et al. [54] Multiple target CV No intermediate storage
Waste recycling algorithm (WARA) Huang et al. [30] Multiple target CV Reduce reagent usage and waste
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the I/O specifications (please refer to our publicly available source
code [73] for details). Util reads the appropriate file to populate all
internal data structures when a stage of the flow begins, and
outputs its result to a text file when the stage is finished.

4.2.1. Scheduler input interface
The scheduler accepts two input files: an assay specification

(a DAG), and a DMFB architectural description, (Fig. 8). The assay
specification contains information needed to construct the DAG;
the Util class reads the text file and creates a data structure of type
DAG called dag to represent the assay. Util annotates nodes with
the operation type, length, and other relevant information to help
understand the assay; the nodes do not (yet) contain any informa-
tion about start times, stop times, or module placement. The
architecture description contains: the dimensions of the chip; the
locations of any I/O reservoirs (on the periphery); any fixed
resources (e.g. heaters and detectors); an initial pin-map (if any;
the default is direct addressing); the droplet actuation frequency;
the time-step length in seconds; and two parameters (hcap and
vcap), which describe relevant aspects of the PCB technology to
the wire router. Util creates a data structure of type DmfbArch
called arch and populates it with this information.

The user may optionally instruct the framework (primarily the
router) to perform wash droplet routing to prevent cross-
contamination. To support wash droplet routing, the architecture
description must specify at least one input port dedicated to wash
droplets; waste ports dedicated to wash droplets are optional.

4.2.2. Scheduler
The scheduler is called with dag and arch passed as parameters,

as shown in Table 2. The scheduler computes the start and stop
times of each node, and the module type to which it is bound (e.g.,
a mixer, heater, detector, I/O, etc.).

4.2.3. Scheduler-to-placer interface
After scheduling, the Util class creates an output file that is

provided to the placer; it does this by flattening dag and arch into a
single text file, including all information added to the nodes by the
scheduler. Prior to placement, an empty vector of reconfigurable
modules, rModules, is allocated, and dag and arch are either
recreated by Util (if the placer runs in standalone mode), or passed
from the scheduler to the placer.

4.2.4. Placement
The placer performs two tasks: (1) it creates a reconfigurable

module, rMod, with a unique id number for each non-I/O node in
dag and adds it to rModules; and (2) it binds rMod to a node in dag
via pointers (e.g., dag-node-module¼rMod); it also binds each
I/O operation to a valid port (e.g., dag-node-ioPort¼port).

4.2.5. Placer-to-droplet router interface
Once placement completes, Util flattens dag (which now con-

tains references to specific modules in rModules), arch and rMo-
dules to produce a text file to be passed to the router. Prior to
invoking the router, Util recreates dag, arch and rModules from the
interface file, along with two new empty data structures. The first
data structure is a list of droplet routes called routes, as shown in
Table 2. The RoutePoint structure represents the (x, y)-coordinate
of a droplet, the cycle number representing when the droplet is at
that given coordinate, and the droplet's status (e.g. waiting,
processing, etc.), which can be useful for debugging. The second
data structure is a vector of cycles called tsBeginningCycle, which
dictates the cycle at which each timestep begins. Starting at time-
step 0, a cycle should be added to tsBeginningCycle for each time-
step. This information is determined in the router because a time-
step cannot officially begin until all droplets have been routed to
their destinations.

4.2.6. Droplet router
The router is called with 7 parameters: dag (scheduled and

placed), arch, rModules (populated by the placer), routes (empty),
pinActivations (empty), tsBeginningCycle (empty) and performWash,
a boolean flag which dictates if wash droplet routing is performed
to clean residue left behind by previous droplets.

Fig. 8. Software architecture of the microfluidic framework, including compiler and synthesis algorithms (written in Cþþ) and visualization tools.

Fig. 9. The synthesis engine contains an instance of a scheduler, placer, (droplet)
router, and (PCB) wire router, as well as internal data structures passed between
synthesis steps.
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The router instantiates a droplet–route pair, pair(Dropletn,
vectoroRoutePointsn4n), for each droplet, which is added to
routes. The router adds a new RoutePoint for each actuation cycle
that the droplet is on the DMFB. Thus, the router maps each
droplet to a vector of RoutePoints, which wholly characterizes the
droplet’s route. A droplet must have a RoutePoint for each actua-
tion cycle along its route. This is not the most time- and space-
efficient representation of a droplet’s route; however, it is easy to
use and understand, and has proven useful for algorithm devel-
opment and debugging.

Wash droplet routes are represented using the same data struc-
tures as a normal assay droplet’s route, as described in the last
paragraph. The Droplet class has a Boolean member called isWash; the
only difference between a wash droplet route and a normal assay
route is the status of the isWash variable in the Droplet class
associated with the route. When creating new droplets, the router
sets the isWash member of any droplets originating from a wash port
as true for proper recognition by the simulator and visualizer. When
routing wash droplets, the router may track contaminated cells that
require cleaning in any way that is convenient to the particular
algorithm; routes are independently analyzed afterward to determine
if cross-contamination occurs.

The tsBeginningCycle data structure contains the exact time at
which each time-step of the schedule begins. Initially, the sche-
dule is computed under the assumption that droplet routing times
are zero [69]; the router computes actual routing times after
scheduling and placement [71]. The exact time at which schedul-
ing time-step tþ1 begins is equal to the time at which scheduling
time-step t ends, plus the time taken to route all droplets, which
the router computes for the (tþ1)st routing sub-problem (i.e., the
routing sub-problem between time-steps t and tþ1).

Lastly, the router generates a pin actuation sequence, which is
encapsulated in a vector of bit-vectors called pinActivations. The
vector pinActivations[i] represents the set of control pins that are
activated during the ith actuation cycle.

4.2.7. Droplet router–wire router interface
Once routing completes, Util flattens dag, arch, rModules, routes,

tsBeginningCycle, and pinActivations to produce a text file to be
passed to the wire router. Prior to invoking the wire router, Util
recreates the same set of data structures from the interface file.
The wire router does not read or write any of the data structures
generated by the droplet router; however, it still unpacks them, as
it generates additional data structures that will be propagated to
its output interface.

4.2.8. Wire router
To compute the PCB wire routes shown in Fig. 6, the wire router

constructs and maintains a routing graph [49,52,78]. The wire
graph is generated automatically from two user-specified para-
meters: the horizontal capacity (hcap) and the vertical capacity

(vcap). Without loss of generality, the hcap is the number of PCB
wires that can be safely routed between two electrodes in the
horizontal direction; vertical capacity is defined analogously. The
diagonal capacity (dcap), which is typically higher than the hcap or
vcap [78], is derived from the hcap and vcap values and particular
underlying wire routing structure that is employed.

The routing graph is generated deterministically from hcap and
vcap. It has a repeatable structure that scales directly to the size of
the array. Fig. 10 shows an example where hcap¼vcap¼3 and
dcap¼7.

The routed PCB is a netlist that describes the routing graph
resources (vertices and edges) that route each net. In Table 1, this
netlist is represented by the wireRoutesPerPin data structure, which
is a vector of vectors of WireSegments (a simple data structure with
a beginning and end node, each of which represents a specific XY
location on the physical PCB). The wireRoutesPerPin data structure is
created as an empty structure and contained by the baseWireRouter
structure/class. The outer vector is indexed by the pin number; thus,
wireRoutesPerPin.at(4) returns the WireSegments contained in Pin
4’s netlist. Each net is routed to exactly one control pin on the
perimeter of the device. In a direct addressing chip, each net
terminates at exactly one electrode; in a pin-constrained chip, each
net fans out to multiple electrodes that are controlled by the same
pin. The same routing graph can be reused for each layer to support
a multi-layer PCB process. All of the nets that are routed on the
same layer are grouped together for visualization.

4.2.9. Wire router–output interface
Once wire routing completes, Util flattens dag, arch, rModules,

routes, tsBeginningCycle, pinActivations, wireRoutesPerPin and the
dimensions of routingResourceGraph, to produce a text file. The
data structures are unpacked later and provided to the visualiza-
tion tool suite, as described in Section 4.5.

4.2.10. Interface bypass
The interface files created by each framework stage are used as

input to the visualization suite, which was written in Java. In practice,
visualization is optional, and the compiler/synthesis flow can run as
one atomic program, passing all internal data structures between
stages; suppressing file I/O reduces runtime and file system clutter.

4.3. (Implemented) compiler and PCB synthesis algorithms

This section summarizes the compiler and PCB synthesis algo-
rithms that have been implemented within the framework; this
discussion is not meant to be a comprehensive literature survey, as
many published algorithms have not yet been implemented.

4.3.1. Scheduling
We have implemented most of the scheduling algorithms that

have been reported in the literature, including greedy heuristics (list

Table 2
List of internal data structures used by the framework, indicating whether the scheduler (S), placer (P), (droplet) router (R), pin-mapper (PM), or (PCB) wire router (WR)
reads (R) or reads and writes (W) the data structure.

Cþþ type and name S P R PM WR

DAG ndag W W R – –

DmfbArch narch R R R W W
vectoroReconfigModulen4 nrModules – W R – –

mapoDropletn, vectoroRoutePointn4n4 nroutes – – W – –

vectorovectoro int4 n4 npinActivations; – – W W W
vectorounsigned long long4 ntsBeginningCycle – – W – –

WireRoutingModeln routingResourceGraph – – – – W
vectorovectoroWireSegment n4 n4 nwireRoutesPerPin – – – – W
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scheduling [22,69], force-directed list scheduling [59], and path
scheduling [23]), as well as two genetic algorithms that repeated call
list scheduling with randomly-generated operation priorities [63,69].
Our papers describing force-directed list scheduling [59] and path
scheduling [23] include comparisons with the other algorithms using
the framework.

Two algorithms that have not (yet) been implemented within the
framework include optimal scheduling via integer linear programming
(ILP) [15,69] and a heuristic called Latency Optimal Scheduling with
MOdule Selection (LOSMOS) [43]. The ILPs that have been published
thus far are specific to two different assay topologies, and we have not
yet tried to generalize them. LOSMOS includes a module selection step
that alters the number of electrodes required to performmixing; using
more electrodes speeds up mixing time, but consumes more on-chip
resources, thus limiting concurrency.

4.3.2. Placement
We have implemented and released three different placement

algorithms: one based on simulated annealing [70], an algorithm
originally proposed for dynamically reconfigurable FPGAs called
Keep All Maximum Empty Rectangles (KAMER) [2] (using a data
structure introduced by Lu et al. [44] to represent free space on the
chip), and a pre-placement technique that we refer to as a virtual
topology [21,22]. Fig. 11(a) illustrates the basic principle of KAMER,
while Fig. 11(b) illustrates a virtual topology.

When a new operation needs to be placed, KAMER queries a
data structure the stores all of the Maximum Empty Rectangles
(MERs), representing free space on the chip, and selects a MER in
which to place the operation; it then updates the data structure
and places the next operation. When an operation completes, it is
removed from the chip and the MER is reconstructed. The virtual
topology, in contrast, pre-determines the regions of the chip
where operations can occur (called modules) and lays them out
in a way that a routing path between every pair of modules is
guaranteed; placement is then converted to a binding problem, in
which any free module that can support an operation is chosen
(e.g., any module can mix or store droplets; however, to perform
detection or heating, a module with an associated detector or
heater is required).

Placement algorithms that have not yet been implemented include
a variation-aware ILP [39] and a reliability-aware placer that uses 3D
deferred decision-making [10]. We also have not (yet) implemented
several algorithms that perform scheduling in conjunction with
placement using iterative improvement algorithms [50,75,77]. At
present, we do not support algorithms that modify the DMFB
architecture (other than pin-mapping). Consequently, we have not
implemented a 3D placer that subsumes scheduling and placement
(the third dimension being time) [82], because its internal data
structure (the T-Tree) is incompatible with DMFBs where external
devices (detectors, heaters, etc.) are pre-placed on the chip; likewise,
we have not implemented a contamination-aware placer that tries to
reduce the number of crossing droplet routes [40], as this particular

Fig. 10. (a) A routing graph tile used for PCB escape routing along with its planar coordinate system; (b) an overlaid routing graph on top of a 2�2 electrode grid
representing physical locations on the PCB.

Fig. 11. (a) Illustration of the way that the KAMER algorithm represents free-space on the chip using (possibly overlapping) maximum empty rectangles (MERs) [2,44].
(b) Illustration of a 4-module virtual topology [21,22], where one of the four modules has a heater and another has a detector.
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algorithm modifies the location and ordering of I/O reservoirs on the
chip’s perimeter.

4.3.3. Droplet routing
Many papers on DMFB routing have been published in recent years

[7,12,19,21,22,32,35,64,71,81,83]; since assay operations (mixing,
detection, etc.) are several orders of magnitude slower than droplet
transport latencies, we have not prioritized a thorough implementa-
tion of all known droplet routing algorithms. The best and most stable
router invokes Soukup’s grid routing algorithm to compute individual
paths for each droplet, under the assumption that they will be routed
one-at-a-time [21,22,64]; a greedy compaction procedure then intro-
duces concurrent transport while ensuring that all droplets follow
their routes.

We have implemented several other droplet routing algorithms
as well, including a high-performance droplet router described by
Cho and Pan [12], and a compaction algorithm based on dynamic
programming described by Huang et al. [32]. We have also
implemented several droplet routing algorithms that are specific
to a general-purpose pin-map that we call a field-programmable
pin-constrained DMFB (FPPC-DMFB) [20,25].

4.3.4. Routing-based synthesis
Routing-based synthesis is an alternative to the traditional

approach of scheduling/placement/routing, in which droplets that
mix travel around the board in arbitrary directions, as opposed to
rotation around a pivot [51]. This eliminates the traditional notion of
rectangular modules that must be placed with a separate droplet
routing stage. All routes are generated probabilistically, and the exact
routes taken by each operation depend on the random number seed.
Additionally, mixing operation latencies now depend on the taken
route, as different movements (straight, turn left/right, reverse) have
different contributions to the total mixing time [51,60].

Under the traditional model of DMFB scheduling [15,22,23,
43,59,63,69], the latency of each operation is known statically. Under
routing-based synthesis, the latency of operations such as mixing and
dilution is not determined until the routes are known, thus scheduling
and routing must be performed together [51]. Our implementation of
routing-based synthesis is implemented in the routing stage of the
framework, i.e., the scheduler and placer take no actions; our
implementation supports wash droplets for cross-contamination
removal as an option [51]. We have integrated (unpublished) exten-
sions to reduce the likelihood of deadlock and livelock and to support
non-reconfigurable operations such as heating, detection, I/O, etc.
Under routing-based synthesis, the chip is partitioned, and each wash
droplet is tasked to proactively remove contamination within each
partition. Our implementation improves the efficiency of wash droplet
routing when multiple droplets simultaneously contaminate a
partition.

4.3.5. Pin mapping
Thus far, we have implemented four pin mappers within the PCB

wire routing stage. The first pin mapper processes the electrode
activation sequence produced by the router, constructs a compatibility
graph between electrodes that could potentially share a pin, and
computes a pin mapping solution by partitioning the compatibility
graph into cliques [86]. Several subsequent papers extended this
approach to further optimize for power and/or reliability
[34,36,79,80], and/or to incrementally compute a wire routing solution
in conjunction with pin mapping [37,79,80]. We have implemented
three of these algorithms: one power-aware pin mapper [36], and two
reliability-aware pin mappers [34,80], the second of which [80] also
performs PCB wire routing.

4.3.6. PCB wire routing
Wire routing for DMFBs is a variation of the escape routing

problem for general PCB routing, in which a route from each pin to
the perimeter of the chip must be found; it is not required to connect
the route directly to an external control pin. For direct-addressing
DMFBs, the problem is identical; for pin-constrained DMFBs, the only
conceptual difference is that a single escape route must be computed
that connects to all the electrodes driven by the same control pin.
Issues such as critical path length or total wirelength are not
optimization criteria for escape routing.

We have implemented one PCB wire routing algorithm, which
works well enough for our purposes [52]. The algorithm is based on
the paradigm of negotiated congestion, which was originally applied
to FPGA routing [53]. The original negotiated congestion-based escape
router considered only single-terminal nets [49]; we modified it to
support multi-terminal nets using the approach taken by the FPGA
routers [52].

One paper has described a DMFB wire router based on ILP, which
can also handle blockages due to external devices [8]; our router can
also handle blockages, as the corresponding vertices are simply
omitted from the routing resource graph. We have not yet implemen-
ted this ILP-based router.

4.4. Verification and validation

Each stage of the compiler and PCB synthesis flow is followed
by a short verification routine, which ensures that the output of
the stage is correct. The verification routine is particularly helpful
for software developers who are integrating new algorithms into
the framework for comparison and new rules can easily be added
by future developers.

4.4.1. Scheduling
A number of rules have been incorporated into the schedule

analysis tool:

� Each DAG vertex must have the proper number of parent/child
nodes (e.g., a dispense operation should have exactly 0 parents
and 1 child).

� Each vertex must be bound to a resource (i.e., I/O port or
module).

� The scheduler may not allocate more resources than available
at any time-step (e.g., 3 simultaneous detects should not be
scheduled if there are only 2 detectors)

� Each vertex in the DAG must be scheduled to begin after the
completion time of all of its predecessors.

� There may be no gaps in between parent and child vertices. For
example, if vertex v completes at the end of time-step 4, all of
its children must start at the beginning of time-step 5. The
scheduler must insert single-cycle storage operations (which
must be bound to physical on-chip resources) if a droplet is
consumed at a later time-step.

4.4.2. Placement
Placement rules have been included to analyze the validity of

the placement or binding solution:

� Two modules cannot be placed on the same cell(s) at the
same time.

� Two modules cannot be placed on directly adjacent cells at the
same time (i.e., there must be an interference region of at least
1 cell between adjacent modules).

� All assay operations must be bound to a module or I/O port; all
modules must be bound to an assay operation.
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� At most one module can be bound to a single assay operation at
any given time-step.

In addition, the analyzer reports warnings in cases where a rule
violation may be acceptable in certain cases, but is often
detrimental:

� Generally, a module should not be placed in a location that
causes its interference region to overlap with a cell adjacent to
an I/O port; however, this may be acceptable if the I/O port is
not used at any point while the module is active.

4.4.3. Droplet routing
Several rules are included to analyze the validity of the droplet

routes for proper simulation and visualization:

� Droplet routing points marked as “OUTPUT” must be adjacent
to an output port.

� Consecutive routing points must describe an orthogonal move
(UP, DOWN, LEFT, or RIGHT). Droplets may not make diagonal
moves in one cycle, and all movements must be to an adjacent
electrode; “jumping” over electrodes is not permitted.

� For each droplet route, there should be no gaps in consecutive
routing points.

� No two droplets may enter one another’s interference regions
(Fig. 12) unless they are splitting or merging.

4.4.4. Droplet routing with wash droplets
Post-routing verification tracks when electrodes are contami-

nated (by an assay droplet passing over the surface) and cleaned
(a wash droplet passes over a contaminated electrode).

� No assay droplet may cross a contaminated electrode, unless it
will mix with the droplet that caused the contamination.

4.4.5. Assay correctness
After routing, the framework validates the following two rules:
Droplet Conservation: any droplet that enters the system must

terminate with a status of MERGED or OUTPUT. (When two
droplets are merged, the resulting droplet receives the lower ID
number of the two droplets. The droplet with the higher ID
number terminates with MERGED status.)

The total volume of fluid injected into the system from input
reservoirs must be equal to the total volume of fluid output. The
volume and composition of each droplet is updated upon each merge
and split operation, in order to keep track of this property. For
example, if 15 10 mL droplets (150 mL total) of fluid A is input, 150 mL
of fluid A must be output, although the total quantity may be
distributed among a larger number of droplets due to mixing and
dilution).

4.4.6. Pin mapping
A legal pin mapping must satisfy the following straightforward

criteria:

� Each electrode must be driven by at most one control pin.
� Each control pin must drive at least one electrode.

Any electrode that is not driven by a control pin can be eliminated
and replaced with white space; it is perfectly legal to do this, as the
additional space is usable by the PCB wire router. Any control pin that
addresses no electrodes should be removed as well; although it is not

an issue of correctness, per se, unused control pins should be removed
to reduce the I/O cost of the chip.

It is important to note that pin mapping can be performed before,
during, or after compilation. Performing pin mapping after compila-
tion essentially converts a direct addressing electrode actuation
sequence into a pin-constrained electrode actuation sequence; in this
case, it is a good idea to verify that the pin mapper does not alter any
of the droplet movements; however, we do not enforce this check,
because it is irrelevant to pin mappers that are performed before or
during compilation.

4.4.7. PCB wire routing
A PCB wire routing solution may use multiple PCB layers. Each

PCB layer is represented by the routing graph, and the set of nets
that are routed on it. A legal PCB routing solution satisfies the
following criteria:

� The set of nets must have a bijective correspondence to the pin
mapping solution; each net (p, Ep) must connect a control pin p
to the set of electrodes Ep that it drives.

� Each net must be routed on exactly one PCB layer.
� The nets routed on a PCB layer must be disjoint (i.e., shared

routing resources between distinct nets is not permitted).
� Net (p, Ep) must route through control pin p and no other

control pins, and electrode set Ep and no other electrodes.
� Each PCB layer must contain at least one routed net (although

not technically needed to ensure correctness, this does prevent
the instantiation of redundant PCB layers).

4.5. Visualization tools

The framework includes an extensive suite of visualization tools
written in Java, as shown in Fig. 3. Visualization provides two key
capabilities that will assist framework users: debugging, and high
quality visual output that can be integrated into papers and presenta-
tions. This subsection highlights these capabilities. We use the Poly-
merase Chain Reaction (PCR) mixing stage as a running example.

4.5.1. Assay visualization
The assay specification (a DAG) is converted into the.dot file format,

which facilitates display via GraphViz [18]. As shown in Fig. 13(a), each
node in the DAG is annotated with information, including its operation
type (e.g., dispense, mix, etc.), length of duration, and its name (if
available). The scheduler computes the start and stop top for each
operation in the DAG, and outputs a .dot file, as shown in Fig. 13(b);
the scheduler also inserts storage nodes when a droplet is produced
by an operation but not consumed immediately. The placer deter-
mines the specific location on the DMFB where each assay operation is
performed within the (start, stop) timer-interval computed by the

Fig. 12. The interference region of a droplet (a) at rest and (b) moving. If any other
droplet enters the interference region, the two will inadvertently merge.
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scheduler. The placer adds this information to each node in the DAG
and outputs a .dot file, as shown in Fig. 13(c).

4.5.2. Placement visualization
We have implemented Java applications to depict placement in 2-

and 3-dimensions. The 2D placement visualizer draws an image of the
DMFB, with modules placed, for each time-step. Fig. 14(a) shows an
example. The “TS 5” label in the upper left hand corner indicates that
this placement occurs at the fifth time-step of the assay. The light blue
cells depict two concurrent mixing operations. The dark ovals above
each mixer provide information about the twomixing operations with
respect to their location in the DAG. The light red cells depict the
interference region (IR) [71] of the mixing operations.

Any droplet that inadvertently enters the interference region of
an operation will mix with the droplet(s) engaged in the opera-
tion, which could result in contamination. Similarly, two opera-
tions that overlap with one another at the same time-step and
location will cause inadvertent mixing. The visualization tool is
thereby useful for debugging placement algorithms. Fig. 14(a) also
depicts I/O reservoirs on the periphery of the DMFB, each of which
displays the type of fluid it contains; the output reservoir is simply
labeled “output.” The cells with insignias—fire and magnifying
glasses—indicate that external devices that perform heating and
detection are available at those locations. The heater is essentially
a physical element that is placed above or below the chip. The
detector, for example, could be an infrared camera, completely
external to the chip, but focused directly on those specific cells.

Fig. 14(b) depicts a 3-dimensional visualization, in which the third
dimension (vertical axis) is time. This allows the user to view the
scheduled and placed assay operations at each time step, as the assay
proceeds. The DMFB is shown at the bottom; a red plane above the
DMFB is drawn for each time-step, and time-steps are clearly labeled.
Operations that have been placed on the DMFB stretch vertically above
the cells that execute them. Modules are labeled with a module
number, which can be used to find the corresponding assay operation
in the DAG, e.g. Fig. 13(c). The placement rotates so that it can be
viewed from all angles; the user can also “fly” through the 3-
dimensional space using keyboard controls to view the placement
from any desired perspective.

4.5.3. Routing visualization
The Java graphics suite uses two different approaches to display

droplet routes. As shown in Fig. 15(a), the cyclic-route view draws an
image for each droplet actuation cycle that droplets are in motion. The
droplets are numbered, and the light red cells surrounding each
droplet represent its interference region (IR).

Similar to modules, two droplets will inadvertently mix if one
enters the interference region of another. The droplet color in
Fig. 15(a) indicates whether the droplet is free to move forward
along its route (green), is waiting for another droplet to move out
of its way (yellow), or has reached its destination and has stopped
(red). Other colors not shown in Fig. 15(a) indicate droplet merging
or I/O operations. The tool draws an image for each actuation cycle
of each “routing phase” (the droplet routes computed for each
timestep in the schedule). For each routing phase, the frames can
be compacted into a movie, where each frame equals 10 ms,
creating a real-time video for a 100 Hz DMFB.

Lower-end machines, such as netbooks and tablets, may not be
able to handle the computational complexity of drawing images for
each droplet actuation cycle and creating a movie. Thus, the visualiza-
tion suite includes a compact-route view, shown in Fig. 15(b), which
draws a single image for each route. The electrodes are numbered so
that the user can see the exact path the droplet is taking. Although the
DMFB may contain multiple droplets at once, only a single droplet’s
path is drawn in any image; otherwise, the image would be too
chaotic and aesthetically displeasing to the human user. Debugging a
router using this tool would be tedious; however, it remains a useful
tool for visualization on low-end computing devices.

4.5.4. Simulation visualization
The graphics suite has two packages that can display the entire

simulation process to the user.
The cyclic simulator draws an image for each droplet actuation

cycle; it includes all images drawn by the cyclic routing visualizer, as
described in the preceding subsection. It also adds images for the
cycles between routing phases where assay operations occur; it shows
droplets being processed inside the modules, as shown in Fig. 16. The
software can stitch the images together to form a movie. This is the

Fig. 13. GraphViz visualization for the assay prior to synthesis (a), scheduled (b), and placed (c). All text is legible in native output files.
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most complete representation, as all executing operations are
visually shown.

The compact simulator is designed for low-endmachines where the
time required to draw images for all droplet actuation cycles may be
prohibitive. This simulator interleaves the 2D placement images, e.g.,
Fig. 14(a), with the compact routing images, e.g., Fig. 15(b). For each
routing phase, one image for each droplet is included. This provides a
quick and efficient representation of the simulation in progress, but at
a coarser granularity of detail than the cyclic simulator.

4.5.5. Wash droplet routing visualization
Fig. 17 illustrates wash droplet visualization. Dirty electrodes

are filled with a brown color and labeled with the ID of the droplet
that contaminated them. Wash droplets (blue; labeled with a ‘W’)
clean contaminated cells, removing the brown shading, and have
special I/O ports, also blue with a small image of a broom to
represent “cleaning.”

5. Experimental comparison

To illustrate the overall utility of our framework, we performed
a set of experimental case studies to evaluate the performance of
different DMFB synthesis and PCB layout algorithms that have
been implemented within the framework. The objective of these
studies is to highlight important algorithmic differences, to the
greatest extent possible, that have not been reported in prior
literature.

5.1. Benchmarks

Table 3 lists 10 benchmark DAGs that were used in our experi-
ments, along with their origins. The first four benchmarks, PCR,
In vitro 4�4, Protein, and Protein Split 5 have been widely used in
past literature on DMFB scheduling [15,22,23,43,59,63,69]; the
remaining six are DAGs generated by four of the different sample
preparation algorithms listed in Table 1: to the best of our knowl-
edge, this is the first time that DAGs generated by any of these

Fig. 14. (a) Sample 2-dimensional placement visualization (the bottom half of the DMFB is clipped for space). All text is legible in native output files. (b) Sample
3-dimensional visualization. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 15. (a) Cyclic-routing visualization depicting where each droplet is located at a particular droplet actuation cycle. Droplet interference regions are shown in transparent
red, while the droplet colors indicate its status (green¼ free to move; yellow¼waiting to avoid droplet interference; red¼droplet has reached its destination). All text is
legible in native output files. (b) Compact-routing image showing the path a single droplet takes. All text is legible in native output files. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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sample preparation algorithms have been used to evaluate the
performance of the scheduling algorithms listed above.

All experiments reported here target a 15�19 DMFB. Experi-
ments were performed on a 2.3 GHz Intel Core i7 processor with
8 GB RAM running 64-bit Windows 7.

5.2. Scheduling results

Fig. 18 reports scheduling results for five different algorithms
on the 10 benchmarks listed in Table 3: List Scheduling (LS) [22,69]
Force-Directed List Scheduling (FDLS) [59], Path Scheduling (PS) [23],
and two Genetic Algorithms (GA-1, GA-2) [63,69]. Fig. 18(a) reports
the length of the computed schedules.

PS is most effective when targeting resource-constrained
DMFBs relative to the size of the assay that will execute on them
[23,59]; PS tries to limit the number of droplets stored on-chip by
finding sequences of dependent operations that can be scheduled
contiguously. This can be a drawback where there exists ample
spatial parallelism, but some operations are delayed to ensure

contiguous execution. Another limitation of PS is that it can only
schedule trees and forests of trees, so it could not produce results
for the sample preparation benchmarks listed in Table 3. LS and
FDLS are greedy algorithms that compute priority functions to
determine which available vertex to schedule at the current time-
step. GA-1 and GA-2 are iterative improvement algorithms also
based on LS. They randomly rearrange the priorities of the vertices
relative to one another; after each perturbation, they call LS to
compute a new schedule with the updated priorities.

The only benchmark in this experiment that is resource con-
strained is Protein Split 5. Only LS and PS find legal schedules, and
the schedule computed by PS is approximately 35% shorter, bene-
fiting significantly from superior spatial resource management. In
contrast, PS computes inferior schedules for the small benchmarks
such as In Vitro 4�4 and Protein, which can easily fit onto the chip.

LS computes a shorter schedule than FDLS for only one bench-
mark, Protein, suggesting than FDLS is perhaps the most effective
heuristic in situations where resource constraints are not strin-
gent. GA-1 and GA-2 often obtain marginal improvements over LS

Fig. 16. Illustration of droplet movement within a module.

Cycle 1 Cycle 2 Cycle 3

Fig. 17. Three cycles of an assay showing dirty cells (brown cells) marked by the ID of the droplet which made it dirty. Wash droplets (blue, labeled ‘W’) have specific input
and output reservoirs (blue I/O ports with broom labeled ‘WAS‘) and clean dirty cells (removing the brown shading). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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and FDLS (except for Protein Split 5), due to their iterative
improvement nature: LS and FDLS compute one schedule each,
while GA-1 and GA-2 compute a large number of randomly-
generated schedules and choose the best.

Fig. 18(b) reports the runtime of the scheduling algorithms. The
fastest algorithm is PS, because it makes scheduling decisions on
the granularity of paths, not vertices. FDLS is slower than LS
because it requires a pre-processing step to compute vertex
priorities, which is not required for LS. GA-1 and GA-2 run several
orders of magnitude slower than the other three, which is
expected for iterative improvement heuristics; in practice, the
runtime can be tuned indirectly by varying a collection of user-
specified parameters.

In all subsequent experiments, we use the LS scheduling result
for all benchmarks except for Protein Split 5. For Protein Split 5 we
use the PS scheduling result instead, due to its dramatically
superior quality in comparison to the schedule produced by LS.

5.3. Placement results

Fig. 19 reports placement results for the KAMER [2,44] and
Virtual Topology (VT) [21,22] placement heuristics depicted in
Fig. 11(a) and (b). VT finds legal placements for all ten benchmarks,
while KAMER finds legal placements for seven of them, echoing
previously reported results [22]. VT clearly articulates the available
on-chip resources to the scheduler; with KAMER, the scheduler

Table 3
Benchmark DAGs used for the experiments reported in this section.

Benchmark Description

PCR PCR Mixing Tree [15]
In Vitro 4�4 Multiplexed in vitro diagnostics with 4 samples and 4 reagents [69]
Protein Protein interpolating serial dilution assay [69]
Protein Split 5 5-level generalization of the Protein assay [23]
BIN (13/128) Single droplet with target CV (13/128) using the BIN algorithm [19]
REMIA (191/1024) Single droplet with target CV (191/1024) using the REMIA algorithm [29]
REMIA (641/1024) Single droplet with target CV (641/1024) using the REMIA algorithm [29]
REMIA (850/1024) Single droplet with target CV (850/1024) using the REMIA algorithm [29]
GORMA (23/256) Single droplet with target CV (23/256) using the GORMA algorithm [11]
CoDOS o2, 45, 23, 67, 934 Single droplet from 5 reactants (R1 - R5) composed as follows from CoDOS [42]

2 parts R1
45 parts R2
23 parts R3
67 parts R4
93 parts R5

Fig. 18. Comparison of five scheduling algorithms for the 10 benchmark DAGs in Table 3: (a) schedule lengths and (b) scheduler runtimes.
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must estimate which operations may execute concurrently but
cannot assess the legality of the resulting placement a-priori.

The metric for comparison reported in Fig. 19 is the total
number of DMFB cells allocated at least once by each placer. This
metric is a proxy for space utilization, but does not directly
correlate with performance. VT achieves more efficient space
utilization than KAMER for five of the seven benchmarks that
KAMER could legally place. KAMER, which is based on a reconfi-
gurable computing paradigm, typically begins with an orderly
placement similar to VT; however, as operations start and stop at
later scheduling time steps, fragmentation may occur, which
negative impacts utilization; in the worst case, fragmentation
may lead to failures as it becomes more challenging to place
scheduled operations in a highly fragmented spatial 2D plane.

In terms of performance, the best placements yield the shortest
droplet routes; however, routing latencies cannot be characterized
until after both placement and routing complete. We discuss this
interplay in detail in the following subsection.

The runtime of both placers was at most 1 ms for all bench-
marks; detailed results are not reported here, as the scheduling
and routing algorithms dominate runtime.

5.4. Routing results

For each benchmark, we compare four different routing algo-
rithm configurations using placements produced by KAMER and
VT (eight data points, per benchmark). Two configurations are
based on a Maze Routing algorithm described by Roy et al. [64].
The Maze Router uses Soukup’s Algorithm to compute the path
that each droplet will take, under the assumption that droplets are
routed one-at-a-time. A post-processing step called “compaction”
is then performed to enable concurrent droplet routing while
preventing interference between droplets. Roy’s implementation
uses a greedy compaction algorithm, a configuration that we refer
to as Maze-Greedy. Huang et al. [32] introduced a more intricate
compaction algorithm based on dynamic programming; however,
their paper only describes how to compact two droplet routes. In
our implementation, if k droplets have been compacted, we must
solve k dynamic programming problem instances in-sequence to
compact the (kþ1)st droplet; we call this configuration Maze-DP.

We also implemented a High-Performance (HP) droplet router
introduced by Cho and Pan [12]. HP prioritizes droplets for routes
based on the concepts of bypassability and concession. Bypassa-
bility estimates the ability of a droplet to route around other
droplets in the chip, which may block it; concession is used to
break deadlocks, where some droplets back off to allow other
droplets to proceed. Similar to the Maze Router, route computation

is followed by compaction. We have implemented two versions of
HP: one using the same greedy compaction algorithm as the Maze
Router (HP-Greedy), and one using a compaction step described in
Cho and Pan’s paper (HP–HP).

Fig. 20 reports the aggregate latencies computed by the three
routers for all droplet routing sub-problems. The choice of placer
(KAMER or VT) has a much greater impact on droplet routing
latency than the choice of droplet routing algorithm: in all cases
where KAMER found a legal placement, VT yielded lower latency
droplet routes than KAMER, regardless of which router was used.
The best performing router was Maze-Greedy, followed by Maze-
DP, HP-Greedy, and HP–HP, although there are a few exceptions (e.
g., Protein under VT, where HP-Greedy yielded the shortest
routes). The greedy compaction algorithm, in most cases, yielded
shorter routes than the DP or HP compactors, regardless of
whether Maze or HP routing was used. DP's weakness is the need
to perform multiple compactions against all of the droplets
undergoing transport, while the HP compactor sacrifices route
lengths in order to improve fault tolerance by utilizing fewer cells.

Fig. 21 reports the runtime of the different routing algorithms.
Across all benchmarks, Maze-Greedy is the fastest running routing
algorithm while HP–HP is the slowest. In almost all cases, each of
the four routing algorithms runs faster under VT than KAMER.

Comparing the results reported in Figs. 20 and 21, Maze-
Greedy is generally the best performing and fastest converging
routing algorithm among the four evaluated here

The Maze-Greedy router is used in all subsequent experiments.

5.5. Pin mapping and wire routing results

We compare three different pin mapping and PCB routing
algorithm combinations that have been previously published by
others. We report the number of PCB layers and the number of
control pins required to realize each chip; as reported by Grissom
et al. [25], these two factors are the primary drivers for total chip
cost, and the number of PCB layers plays a more significant role.

The RAU-Aware pin mapper [36] attempts to minimize the
number of Redundant Activation Units (RAUs). An RAU is the
activation of an electrode (due to pin sharing) that does not
directly act on a droplet, thereby expending excess power. Under
pin sharing, some RAUs are unavoidable, but power savings can be
achieved in RAUs are taken into account. After pin mapping, the
PCB wire route is computed using an algorithm proposed by
McDaniel et al. [52].

The GV-Aware pin mapper [34] judiciously inserts ground vectors
(GVs) to mitigate the impact of trapped charge [3,16,74] and residual
charge [61], both of which negatively affect reliability and degrade

Fig. 19. Comparison of the KAMER [2,44] and Virtual Topology (VT) [21,22] placers on the 10 benchmark DAGs in Table 3.
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performance. Inserting a GV quickly deactivates an electrode that
would otherwise be charged, thus reducing the accumulation of
charge over time. After pin mapping, the PCB wire route is computed
using an algorithm proposed by McDaniel et al. [52].

The Toggle-Aware pin mapper [80] tries to reduce the number
of times each electrode is toggled on/off, which reduces the
likelihood of electrolysis [31]. Unlike the other two pin mappers,
Toggle-Aware performs PCB wire routing incrementally as an
integrated part of the algorithm. In principle, it can call any
incremental wire routing algorithm as a subroutine, as needed.
Our implementation calls an incremental extension to the PCB
wire routing algorithm proposed by McDaniel et al. [52].

RAU-Aware and GV-Aware employ a progressive addressing
scheme in which subsets of yet-unaddressed electrodes are
repeatedly selected and grouped with others to implement control
pin sharing; both algorithms model the pin count expansion using
a network flow problem to limit the growth in the number of
control pins while reducing power consumption or increasing
reliability as needed. Toggle-Aware takes a different approach, in
which one unaddressed electrode is added at a time; moreover,
the switching constraint is progressively relaxed, permitting the
algorithm to discard unsuccessful electrode groupings and start
over. Thus, Toggle-Aware is noticeably different than RAU-Aware
and GV-Aware in terms of algorithmic structure; this difference
may (or may not) account for the disparities in experimental
results reported here.

Toggle-Aware, as described in Ref. [80], does not admit PCB
routing solutions with multiple layers. Our implementation
relaxes this assumption, which enables more extensive pin shar-
ing. Since RAU-Aware and GV-Aware are not cognizant of the
number of PCB layers, this approach represents the fairest possible
comparison.

5.5.1. Number of PCB layers
Fig. 22 reports the number of PCB layers obtained by each

algorithm using both the KAMER and VT placers. The most
significant result shown in Fig. 22 is that the choice of placer often
has a greater impact on the number of PCB layers than the choice of
pin mapper: in all cases, the VT placer yielded fewer PCB layers than
KAMER, regardless of which pin mapper was used. Among the
different pin mappers, there are no clear trends. For example, GV-
Aware yields the fewest PCB layers for In Vitro 4�4 under VT, and
the most for BIN (13/128) under VT. In principle, more conservative
pin sharing [37] could further reduce the number of PCB layers.

5.5.2. Pin sharing
Fig. 23 reports the number of control pins obtained through pin

sharing by each algorithm using the KAMER and VT placers.
Similar to Fig. 22, the VT placer uniformly reduces the number
of control pins, although the reduction is truly dramatic for just
one benchmark: BIN (13/128). Among the three pin mappers,
there are no uniform trends, although Toggle-Aware has a general
tendency to require a few more control pins than the others. RAU-
Aware and GV-Aware require the same number of control pins in
most cases, although there are a few cases whether either RAU-
Aware or GV-Aware requires fewer pins.

5.5.3. Redundant activations
Fig. 24 reports the number of RAUs obtained through pin

sharing by each algorithm using the KAMER and VT placers. In
most of the experiments Toggle-Aware yields considerably more
RAUs than either RAU-Aware or GV-Aware. Although the choice of
placer does not have a significant effect on the total number of
RAUs, there are no uniform trends, i.e., sometimes KAMER is better

Fig. 20. Performance comparison of the Maze-Greedy [64], Maze-DP [32,64], HP-Greedy [12,64], and HP–HP [12] routing algorithms across the 10 benchmarks from Table 3
using the KAMER and Virtual Topology (VT) placement heuristics.
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than VT, and sometimes VT is better than KAMER. The most
notable result obtained from examining these results is that GV-
Aware appears to be just as good as RAU-Aware in terms of RAU
minimization, despite that the later was designed precisely to
solve this problem.

5.5.4. Switching activity
Fig. 25 reports the amount of switching activity (electrodes

toggling on/off) observed through pin sharing by each algorithm
using the KAMER and VT placers. The amount of switching activity
seems to be near uniform across most system configurations for
most benchmarks. In other words, Toggle-Aware does not seem to
offer any advantages over RAU-Aware and GV-Aware in terms of
reducing switching activity, despite its intended objective; addi-
tionally, the effects of different placement results on switching
activity appears to be negligible.

5.5.5. Ground vectors
Fig. 26 reports the number of ground vectors (GVs) inserted as

part of pin sharing by each pin mapper using the KAMER and VT
placers. Unsurprisingly, GV-Aware tended to reduce the number of
GVs inserted compared to RAU-Aware and Toggle-Aware. Using
KAMER for placement in conjunction with GV-Aware pin mapping
led to fewer GVs inserted compared to using VT for placement in
all but two cases, BIN (13/128) and GORMA (23/256).

5.5.6. Discussion
Absent pin sharing, the operations most likely to necessitate

the insertion of GVs are those that activate an electrode for many
consecutive time-steps, i.e., storage and any operation that

activates an external device for an extended period of time.
Without loss of generality, electrodes involved in mixing opera-
tions cannot share the same pin as electrodes involved in storage
operations that are scheduled at the same time. The electrodes
that perform mixing repeatedly switch on and off, while the
electrodes that perform storage remain activated (before GV
insertion): a pair of electrodes that require simultaneous activa-
tion and deactivation cannot share the same pin.

KAMER and VT minimally consider the operations that they
place and neither tries to optimize for pin sharing or power/
reliability when making decisions. KAMER places operations that
use external devices on regions of the chip that are accessible to
those devices; beyond that, its objective is simply to obtain a legal
placement at each time-step. VT also accounts for external devices
and considers whether each work module is performing mixing or
storage at a given time-step. VT may transport a droplet from one
module to another during storage to free up the former module for
another operation. VT makes these decisions this without con-
sidering the implications for pin sharing and power/reliability
insertion. Thus, it is difficult to ascertain whether the differences
between VT and KAMER reported in Figs. 24–26 are inherent to
the placement algorithms, or essentially just random effects. To
better answer this question, future work should focus on syner-
gistically optimizing scheduling and placement with pin sharing
while considering power reduction and/or reliability.

6. Device interface and control

Fig. 27 depicts the device interface and control software. An
application written in Java runs on a host PC; it communicates

Fig. 21. Runtimes of the Maze-Greedy [64], Maze-DP [32,64], HP-Greedy [12,64], and HP–HP [12] routing algorithms across the 10 benchmarks from Table 3 using the
KAMER and Virtual Topology (VT) placement heuristics.
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with an ATmega2560 microcontroller, which interfaces directly
with the DMFB. The current version of the system can control
DMFBs based on the paradigm of direct [62] or active-matrix
[27,58] addressing, both of which provide independent control
over each electrode; the active-matrix is implemented using thin

film transistors fabricated on a glass substrate, similar to liquid
crystal displays. Although the control interface to an active-matrix
DMFB is considerably different than to a direct-addressing chip,
the fundamental property of individually addressable electrodes
ensures that the same algorithms for scheduling, placement, and
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Fig. 22. The number of PCB layers obtained using the RAU-Aware [36], GV-Aware [34], and Toggle-Aware [80] pin mappers, with KAMER and VT placers.
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Fig. 23. The number of control pins obtained using the RAU-Aware [36], GV-Aware [34], and Toggle-Aware [80] pin mappers, with KAMER and VT placers.
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routing can be used in a compiler that targets both devices. The
following subsections describe the Java control program and the
embedded control software that runs on the ATmega2560.

6.1. DMFB control software

Fig. 28 shows a screenshot of the Java application that runs on
the host PC. An architecture description file, describing the array
dimensions, DMFB driving technology (direct or active-matrix

addressing), and microcontroller pin map (e.g., column 0 connects
to general purpose I/O pin 23 on the microcontroller) initializes
the program.

The control software permits either manual or automatic
control of the device. For instance, the user may click on electrodes
in a visual depiction of the device to activate and de-active them
(in Fig. 28 yellow electrodes are selected by the user for activation
during the next cycle; green electrodes are activated during the
current cycle). Multiple electrodes can be selected at once by
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Fig. 24. The number of redundant activations (RAs) observed when using the RAU-Aware [36], GV-Aware [34], and Toggle-Aware [80] pin mappers, in conjunction with the
KAMER and VT placers.
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Fig. 25. The switching activities (toggles) observed when using the RAU-Aware [36], GV-Aware [34], and Toggle-Aware [80] pin mappers, in conjunction with the KAMER
and VT placers.
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grouping them. If one electrode is activated, the keyboard arrow
keys can move the activated electrode to one of its four adjacent
neighbors (e.g., this feature could manually transport a droplet). As
the user “enters” new electrode activations, the sequence is
recorded and saved for playback.

The control software can also load and play electrode activation
sequences generated by the compiler. During playback, the cycle
length (in ms) can be adjusted to change the electrode activation
time. For active-matrix devices, the length of the gate pulse (in ms),
i.e., the time to charge the capacitor, can be varied to adjust the
refresh rate in response to physical parameters that dictate the
charge retention time.

6.2. Microcontroller software and DMFB interface

The host PC control software interfaces with the microcontrol-
ler via a serial communication protocol over a USB cable. When the
board is controlled manually, the set of electrodes to be activated
is sent when the user hits the “Enter” key, as described in the
previous subsection. The microcontroller holds this status until
another electrode pattern is received. During playback, the host PC
can only transmit a portion of the overall electrode activation
sequence at a time; the number of cycles that can be sent in a
single bulk transfer depends on the number of electrodes and the
microcontroller’s memory capacity. The microcontroller plays the
received subsequence at the desired frequency (as specified by the
configuration in the host PC control software). When it completes,
it sends a message to the host PC to ask for the next subsequence
to play back. This process repeats until the activation sequence is
played back in full. The serial connection between the host PC and
microcontroller is 115,200 bits per second (millisecond scale),
sufficient for transmission of the next state before the activation
time of the current state completes.

To support a direct-addressing DMFB, each pin is set to ON or
OFF and then left alone until the next bit-vector in the sequence is
processed. Active-matrix DMFBs are controlled like LCD screens
and require a continuous refresh. An active matrix DMFB has a

thin film transistor under each electrode, which acts as a capacitor.
Rows are selected one-by-one; while each row is selected, the
driver steps through the columns and charges the capacitor at the
row-column intersections if the electrode requires activation.
Without refresh, the capacitors will dissipate their charge/state.

6.3. State machine controller

The size of a state machine is T�C, where T is the number of
time-steps (at the routing granularity), and C is the number of cells
in the chip. The uncompressed storage requirement can be quite
high [48]. By compressing the state machine, it is sometimes
possible to reduce its size so that it can fit directly onto the
microcontroller. Once the state machine is loaded into the micro-
controller’s memory, the host PC is no longer needed to execute
the assay, thereby reducing cost and increasing overall portability.

Fig. 29 depicts the bit-vector sequence required for the first six
states of a 2�2 mixer. The mixing process is actually a circular
repetition of four electrodes activated one at a time. Without any
compression, this example requires six bit vectors, each 4 bits in
size; after the first four states, all subsequent bit vectors are
redundant until the mixing finishes; in this example, two are

Fig. 26. The number of GVs inserted by the RAU-Aware [36], GV-Aware [34], and Toggle-Aware [80] pin mappers, in conjunction with the KAMER and VT placers.

Fig. 27. Control software interface. An application written in Java and running on
the host PC transmits a sequence of bit vectors representing electrode actuations to
an ATmega2560 microcontroller, which interfaces directly with the DMFB.
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redundant. Therefore, it is much more space efficient to put the
four repeating bit vectors into a dictionary D, and have each state
output a two-bit dictionary index j. The control software accesses
the jth dictionary entry, D[j], which is a bit-vector representation
of the electrodes to activate at the next time-step.

There is also redundancy in the repeated cycle of four states,
which is essentially an unrolled loop. A state machine minimiza-
tion algorithm could identify this redundancy and convert the
linear sequence to a four-state loop. This reduces the number of
unique states, each of which requires a unique identifier, in the
DMFB control program; our framework automatically generates
the DMFB control program in the C language.

6.3.1. Dictionary generation
The first step is to identify redundant bit vectors, i.e., Moore

Machine state outputs. There is no need to understand context
when examining a state, i.e., whether the state is part of an
operational or routing phase is irrelevant.

The process of dictionary generation is straightforward. The
dictionary is represented as a vector of bit-vectors, D, and a hash
table H is used to improve performance. Let Si denote the ith state
in the linear Moore Machine, and let Bi denote the corresponding
bit-vector. Initially, both D and H are empty.

States can be processed in any order. When processing state Si,
we compute a hash table lookup H(Bi), to determine if Bi is

redundant, i.e., it has been encountered already. If Bi is redundant,
then the result of H(Bi) is a tuple (Bi, j), indicating that D[j]¼Bi, i.e.,
Bi is stored in the jth entry of dictionary D. The Moore Machine
output of state Si is changed from Bi to j, which indicates a
dictionary lookup. Since D is incomplete until all states have been
examined, the number of bits required to express the value j is not
yet known.

If Bi is not redundant, then Bi is appended to D, i.e., if |D| is the
current number of entries in D, then Bi is inserted into dictionary
entry D[|D|þ1], and the tuple (Bi, |D|þ1) is inserted into H. This
way, if Bi is encountered again, the hash table will return the
correct dictionary index for Bi. After the dictionary is built, the
number of bits required for each dictionary index j (Moore
Machine state output) is log2|D|.

6.3.2. Reducing the number of States
To reduce the number of states, each operational stage is

converted into a loop, while routing stages (which presumably
contain no repetitions) retain the linear structure of the original
state machine. The boundaries between operational stages and
routing stages are determined from the scheduling, placement,
and routing solutions; there is no need to extract this information
from a bit-vector sequence.

The algorithm to convert each operational stage into a loop is
simple. Let there be n concurrent operations, which may include

Fig. 28. Screenshot of the DMFB control software. The user can create and save manually-designed electrode activation sequences by clicking on cells in the “DMFB Control
View” shown on the right; green cells are currently activated cells, while yellow represents cells that the user has selected for activation during the next cycle. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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mixing (modules may have different sizes), storage, or usage of an
external device; these operations are naturally repetitive. Let ci be
the number of cycles required for one iteration of the ith operation
oi. For example, if oi is a 2�3 mixer, then ci¼6; if oi is storage or
usage of an external device, then ci¼1. The number of states in the
loop is the least common multiple of all of the ci values. For
example, if operations o1 and o2 have c1¼4 (e.g., a 2�2 mixer) and
c2¼3 (e.g., a 2�3 mixer), then the loop will have 12 states. Within
one iteration of the loop, o1 will complete three cycles and o2 will
complete four cycles. This ensures that all droplets have the same
starting point at the beginning of the loop in the state machine.

6.3.3. Microcontroller implementation
The ATmega2560 microcontroller has 256 KB of programmable

flash memory called Program Memory and 8 KB of SRAM called
Data Memory. The Program Memory stores the dictionaries and
index arrays used for compression. The Data Memory stores the
state machine control code and local variables.

6.3.4. Experiments
We considered 10 assays commonly used in peer-reviewed

publications on programmable microfluidics: one PCR mixing tree,
five multiplexed in vitro diagnostics assays with a varying number
of samples and reagents (“in Vitro xs_yr” means x samples and y
reagents), and four exponential protein dilution assays with a

varying number of splits. We compiled the assays using two
synthesis flows with two different placers: KAMER (Fig. 11(a))
[2,44], and a virtual topology (VT) (Fig. 11(b)) [21,22]; we used the
same scheduling and routing algorithms in both experiments. We
expected that the VT placer would yield smaller state machines,
because all mixing operations would have identical geometries
and occur in the exact same set of restricted locations on the chip,
while KAMER can place any operation at any location.

First, we compiled each assay into a linear state machine using
both synthesis flows, similar in principle to Fig. 4; the memory
requirement of every single assay exceeded the capacity of the
ATmega2560. Next, we compressed the state machines using diction-
ary compression only (D) and dictionary compression in conjunction
with state machine optimization (DþSM). Fig. 30(a) and (b) reports
the program and data sizes for the two respective synthesis flows. The
C programs generated by our synthesis flow are converted to .elf files,
and the results shown in Fig. 30 report the.elf file size in KB.

Fig. 30 shows that compression fails for two benchmarks
(Protein and Protein Split 3) with KAMER, but succeeds for all
benchmarks for VT. The general trend is that program and data
segment sizes are smaller for VT than for KAMER.

Compression using the dictionary and state machine optimiza-
tion (DþSM) yielded lower overall memory requirements than
dictionary compression alone (D). Luo et al. [48], it should be
noted, achieved even greater reductions in dictionary size using
run length encoding; however, the decoding process is complex,

00 01 10 11 00 01

Dictionary

00 0000010000000000
01 0000000001000000
10 0000000000100000
11 0000001000000000

Fig. 29. Illustration of dictionary compression: redundant bit vectors are identified and put into a dictionary. Each state‘s output is now an index into the dictionary. The
original Moore Machine had 6�16¼98 output bits; the compressed Moore Machine has a dictionary consisting of 4�16¼64 bits, while the state machine requires
6�2¼12 output bits, for a total of 76 bits.

Fig. 30. Effectiveness of compression algorithms on program/data sizes using the (a) KAMER [2,44] and (b) virtual topology (VT) [21,22] placers.
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and Luo et al. offloaded the task onto a small FPGA; to minimize
the cost and complexity of our microcontroller interface, we avoid
runlength encoding.

It remains possible to specify assays whose state machine
implementations are too large to fit into microcontroller memory,
even with compression. In this case, there is no tangible benefit to
compression, as the PC is still required to run the system. In
principle, a PC could store the state machine and dictionary as data
and decompose them into chunks that can fit into the microcon-
troller’s memory; when the state machine executing on the
microcontroller enters a state or accesses a dictionary entry that
is not in the microcontroller’s memory, the access could be
forwarded back to the PC, which then delivers a new chunk of
code and data. For large chunks, the transmission latency could be
significant, potentially causing the assay to pause. Rather than
trying to mitigate this overhead, it is easier to execute the assay in
an uncompressed form with predictable communication, as
described in Section 6.2.

7. Related work

To the best of our knowledge, no comparable software platform
for DMFB control has been released to the wider research com-
munity. The closest related project is an open source hardware/
software system developed at the University of Toronto called
DropBot [17]. DropBot provides real-time monitoring of droplet
position and velocity and application of constant droplet driving
forces in the presence of variations in amplifier load and device
capacitance due to physical variations in the insulator. DropBot
does not provide automatic compilation. The user must manually
select electrodes to activate and deactivate over time; rather than
clicking on an image of the chip, as in our system, the user is
presented with a webcam video overlay of the chip.

Bhattacharjee et al. [5] described a formal verification checking
system for DMFBs, which share some principle similarities with
the verification steps in our system, as described in Section 4.4;
they do not provide verification rules for pin mapping and PCB
escape routing. The paper mentions a DMFB simulator called
SimBioSys, and provides a screenshot; however, no such software
could be located online.

8. Conclusion

We encourage researchers who want to study or otherwise use
DMFB compilation and PCB synthesis to download and use our
framework. We hope that researchers with a background in
computer science and engineering will develop and contribute
new algorithms and features to the framework, as it provides a
common, standardized platform for dissemination and compar-
ison. We also hope that practitioners who use DMFBs in their
laboratories will adopt the framework, eventually switching to
BioCoder as a specification language. In the long term, we intend
to leverage the framework at UC Riverside to create undergraduate
and graduate courses on programmable microfluidics (focusing on
DMFB technology specifically) and to support undergraduate
senior design projects and graduate-level projects and theses.
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