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ABSTRACT 

We introduce an online synthesis flow for digital microfluidic 

biochips, which will enable real-time response to errors and 

control flow. The objective of this flow is to facilitate fast assay 

synthesis while minimally compromising the quality of results. In 

particular, we show that a virtual topology, which constrains the 

allowable locations of assay operations such as mixing, dilution, 

sensing, etc., in lieu of traditional placement, can significantly 

speed up the synthesis process without significantly lengthening 

assay execution time. 

Categories and Subject Descriptors 

B.7.2 [Integrated Circuits]: Design Aids – Placement and 

routing. 

General Terms 

Algorithms, Design, Performance. 

Keywords 

Microfluidics, Laboratory-on-Chip (LoC), Electrowetting-on-

Dielectric (EWoD), Synthesis. 

1. INTRODUCTION 
With the emergence of novel, scalable, flexible digital 

microfluidic biochips (DMFBs) [15], new features such as end-

user programmability and online synthesis will revolutionize 

microfluidic applications. Instead of application-specific DMFBs, 

low-cost, general-purpose DMFBs will provide a reusable, 

flexible, programmable platform. With the notion of end-user 

programmability being introduced to DMFBs, control-flow 

constructs present exciting, new possibilities for microfluidic 

applications. Consequently, when control-flow is introduced, 

synthesis (Figure 1) will need to be performed online since the 

order of assays (biochemical reactions) to be executed is no 

longer deterministic, but instead dependent on live-feedback from 

the DMFB [2][13]. 

In contrast to offline compilers, which synthesize assays as 

deterministic state-machines, an online interpreter will act more 

like a virtual machine which manages the DMFB’s resources and 

interprets assays on-the-fly. Figure 2 shows the tradeoffs that 

need to be made when moving synthesis online. During offline 

compilation, optimized designs are created with little concern to 

runtime since the synthesis process is run once and the compiled 

“executable binary” is packaged into an application-specific 

device. With a programmable DMFB, the end-user will have to 

wait each time a programmed assay is synthesized. Furthermore, 

each time a branch is taken, the user will have to wait as the target 

assay of the branch is interpreted online. Thus, new synthesis 

methods are needed that concede optimality in performance and 

area to reduce algorithmic runtimes from seconds/minutes to 

milliseconds and achieve a greater amount of flexibility [13]. 

1.1 Motivation 
We motivate the need for fast, online synthesis methods with an 

example that is either impossible without this feature, or requires 

unreasonably complex solutions. Consider a drug-discovery 

application where a DMFB executes an assay, measures the result 

and then automatically executes a new assay (or batch of assays) 

with different concentrations, based on the previous result. This 

process is repeated thousands of times until a set of concentrations 

yielding the desired result is discovered. 

With offline compilation, a single DAG must be created that 

details every possible execution path, which quickly becomes 

intractable as the compiler must account for numerous paths that 

will never be taken [2]. Instead, upon completion of one assay, an 

online interpreter could immediately interpret and execute the 

next assay with only milliseconds of downtime between assays.  

Although synthesis has been performed entirely offline up to this 

point, Ho, Chakrabarty and Pop suggest that online systems are 

forthcoming with the development of “specialized heuristics” 

which can perform synthesis in milliseconds [10]; Luo 

Chakrabarty, and Ho [13] have implemented one such specialized 

heuristic for an error detection and recovery scheme based on 

checkpointing: at each checkpoint, a droplet is routed to a sensor 

that detects whether its concentration is satisfactory; if not, the 

assay is re-synthesized on-the-fly to repeat the sequence of 

operations that produced the droplet, interleaving the schedule  of 

these newly-introduced operations with concurrent operations that 

do not depend on the droplet that failed the checkpoint.  
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Figure 1. DMFB synthesis consists of scheduling, placing and routing. 

 

        

Figure 2. Offline vs. online synthesis tradeoffs. 

 



1.2 Contribution 
Assays are synthesized by computing solutions for three NP-

complete problems, as seen in Figure 1. Before synthesis, an 

assay is modeled as a directed acyclic graph (DAG), where the 

nodes and edges represent operations and operation dependencies, 

respectively. Each assay operation is then assigned start/stop 

times during resource-constrained scheduling [19]. During the 

placement stage, the scheduled operations are assigned specific 

locations, called modules, on the array [25]. Finally, the routing 

stage computes droplet paths between subsequent modules and 

I/O ports so droplets arrive safely at each destination [27].  

We present an online synthesis flow that can interpret assays and 

map them onto a cross-referenced, fully-addressable or active-

matrix DMFB [15] in milliseconds, making it appropriate for both 

offline and online synthesis. Our key contribution is a virtual 

topology that defines distinct regions for module placement and 

droplet routing. With our topology in mind, list scheduling [24] is 

used to quickly produce schedules. Placement, which has been 

solved in the past by iterative improvement algorithms [25][32] or 

integer linear programming (ILP) [12], is simplified to a binding 

problem, which can be solved efficiently in polynomial-time [11]. 

The placement defined by the virtual topology provides dedicated 

routing cells which ease the router’s job. We simplify an existing 

router [20] to compute droplet paths very quickly.  

1.3 DMFB Technology Overview 
A DMFB manipulates discrete droplets of fluid on a 2D array of 

electrodes (Figure 3(a)) through electrowetting, a process that 

induces droplet motion [18]. Figure 3(b) shows a droplet 

sandwiched between a ground electrode and a set of independent 

control electrodes. The droplet is centered over one electrode 

(CE2), but overlaps adjacent electrodes CE1 and CE3. If a voltage 

is applied to CE1 or CE3, the surface energy gradient induces 

motion and the droplet will move to the center of the newly 

activated electrode(s). During each droplet-actuation cycle, a set 

of electrodes is activated which moves droplets from electrode to 

electrode. Basic assay operations such as transport, mixing, 

merging and splitting are performed through the appropriate 

sequence of electrode activations over a number of cycles.  

There are several classes of DMFBs that provide varying levels of 

droplet control. Typical direct-addressing (fully-addressable) 

DMFBs have one control pin for each electrode (i.e.       

control pins for an       array of electrodes) so each electrode 

(droplet) can be independently controlled at all times. However, 

the wiring cost of independently controlled electrodes, especially 

as array sizes grow, has motivated cheaper designs [29]. 

Cross-referencing DMFBs use       control pins to control an 

      array of electrodes [5]. In this scheme, each row and 

each column has a single control pin; when a particular column   

and row   are activated, the electrode at       is activated. 

Multiple columns and rows can be simultaneously activated, but 

may cause superfluous electrode activation, yielding undesired 

droplet movement [28]. Thus, once a route for a direct-addressing 

DMFB is computed, each droplet-actuation cycle is serialized 

across multiple droplet-actuation cycles, resulting in prolonged 

routing times and increased algorithmic complexity. 

Pin-constrained DMFBs represent another addressing scheme. An 

assay is first synthesized as if on a direct-addressing DMFB; then, 

special heuristics attempting to solve the clique partitioning 

problem (NP-Hard) are used to minimize the total number of 

control pins, based on which electrodes can be activated together 

without causing undesired droplet movement [29]. 

To summarize, pin-constrained designs offer minimal product 

costs, are inflexible and cannot be reprogrammed after being 

manufactured; cross-referencing DMFBs are reprogrammable, but 

add another layer of complexity that must be handled to serialize 

droplet motion [28].  

Fortunately, active-matrix addressing designs are emerging which 

give independent control of       electrodes while using only 

      control pins [15]. Active matrix addressing can scale 

without growing prohibitively expensive, while maintaining the 

maximum level of flexibility and control so that assays can be 

programmed with minimal levels of algorithmic complexity. The 

online synthesis flow presented in this paper is compatible with 

direct, cross-referencing, and active-matrix addressing DMFBs. 

2. RELATED WORK 
Here, we highlight some of the previous work in DMFB synthesis 

for scheduling, placement and routing. 

2.1 Scheduling 
Su and Chakrabarty present modified list scheduling (MLS) and 

genetic algorithm (GA) heuristics, as well as an optimal integer 

linear programming (ILP) model for scheduling microfluidic 

operations onto a DMFB [24]. As expected, the ILP 

implementation consumes a large amount of time to compute 

optimal solutions. Although the GA finds optimal or near-optimal 

results in much less time than ILP, its iterative nature still results 

in large computation times. MLS produces schedules comparable 

to GA in much less time. Other scheduling algorithms such as 

Ricketts’ hybrid genetic algorithm [19] and Maftei’s tabu search 

scheduler [14] are iterative improvement algorithms which spend 

anywhere from 4 seconds to 1 hour computing schedules. We 

chose list scheduling as the base scheduler for our framework, but 

other fast schedulers being developed now [8][16] or in the future 

could be used as well. 

2.2 Placement 
At the physical level, all electrodes are equally capable of 

performing the basic microfluidic operations (i.e. merging, 

mixing, splitting, transport, storage); hence, basic operations can 

be performed anywhere on a DMFB array. The objective for most 

placers is to pack as many concurrent operations/modules into as 

little area as possible. Several direct-addressing placement and 

unified scheduling-placement algorithms [25][26][30][32] use 

simulated annealing, which run in minutes or tens of seconds; in 

contrast, our online flow completes in tens of milliseconds.   

Griffith et al. [6] place a virtual topology onto the DMFB, which 

dictates separate regions for assay operations and droplet routing; 

however, they only present results for one assay, and their 

implementation suffers from deadlocks during droplet routing. 

Our approach is similar, but does not suffer from deadlock; in the 

absolute worst case, our router will transport one droplet at a time; 

however, we include a compaction step to transport multiple 

droplets concurrently.  

 

(a)                                                 (b) 

Figure 3. (a) DMFB with a 2D array of electrodes; (b) DMFB cross-

section. 

 



2.3 Routing 
Böhringer [3] modeled droplet routing as an A* search, similar to 

path planning in robotics, achieving an optimal-length solution, 

when routable. Su et al. route droplets sequentially and redo 

placement when routing fails [27]. BioRoute [31] uses a min-cost 

max-flow algorithm to compute several routes at once, followed 

by negotiation-based detailed routing. Cho and Pan [4] route 

droplets one-by-one and sort them based on a bypassability 

metric; if a deadlock occurs, droplets are moved to concession 

zones to break the deadlock. Huang and Ho [9] construct a system 

of global routing tracks, which are aligned in the same direction as 

the majority of droplets traveling on that tract. They use an 

entropy-based equation to determine the order in which droplets 

are routed, and finally, compact the routes using dynamic 

programming. Since the aforementioned methods were designed 

for offline routing, few mention runtimes [3][4][27]. BioRoute 

[31] and Huang’s algorithm [9] both report runtimes below 1s on 

a desktop PC. The router used in our online flow, in contrast, 

achieves comparable runtimes on an Intel AtomTM
 processor. 

2.4 Combined Methods 
Most work on synthesis has focused on the scheduling, placement 

or routing problems in isolation. Several papers, however, solve 

some of these problems together, using iterative improvement 

heuristics [13][25][26][30][32], whose runtime is prohibitive. 

These approaches address problems that can arise when one stage 

of synthesis does not consider the next. For instance, a placer can 

generate a valid placement that is unroutable. Our virtual topology 

ensures routability by leaving room for droplets to pass between 

adjacent “modules” where mixing, storage, and other assay 

operations are performed.   

3. VIRTUAL TOPOLOGY 
Our online interpreter utilizes a virtual topology, as seen in 

Figure 4, and takes advantage of its order and structure to yield 

fast algorithmic runtimes for scheduling, placement and routing. 

First, we define a cell as the 2D area covering an electrode. The 

virtual topology shows evenly spaced modules (3x3 squares of 

cells) where basic droplet operations (i.e. merge, mix, split, store) 

are performed. If at least one of a module’s cells is augmented 

with an external detector or heater, the module can also perform 

detect or heat operations, respectively. The white cells indicate the 

area of the DMFB array used explicitly for routing droplets 

between modules and I/O ports (not pictured); however, any cell 

can be used for routing if a module is not in use. Dedicated 

routing cells ensure there is a valid path between any source-

destination pair. A perimeter of interference region (IR) cells 

surrounds each module [27], so that interference-free droplet 

routes can be computed easily; this topology ensures that there is 

at least one path between all DMFB inputs, modules, and outputs. 

The inputs and outputs, (not shown in Figure 4), are on the 

perimeter of the chip.  

3.1 Module Topology and Synchronization 
To help prevent droplet deadlock, droplets have well-defined 

module entrance and exit locations, as seen in the 3x3 module of 

Figure 5(a). The two entrances are in the northwest and 

southwest corners, while the exits are in the northeast and 

southeast corners. By providing distinct entrances and exits, we 

prevent droplet deadlock by allowing droplets leaving a module to 

wait safely in their exit cells as long as necessary to avoid 

deadlock in the routing cells. Figure 5(b) and Figure 5(c) show 

that modules can be elongated along the X- or Y-axis to 

accommodate larger 2x4 mixers, often used in literature [17][19].  

As seen in Figure 6, time-step stages of assay operations are 

interleaved with routing stages until the entire schedule has been 

processed. A time-step is the basic, minimum-resolution unit of 

time used to schedule microfluidic operations; time-steps usually 

last one or two seconds and are fixed in length for the duration of 

the assay. The routing stages are variable in length, depending on 

the routes that are generated, and can even be instantaneous if no 

droplets are being routed between time-steps. 

Droplets are required to enter/exit a module at one of the two 

entrances/exits. When a droplet travels to a new module, it must 

enter the module during the routing phase at one of the module-

entrance cells and wait until the time-step officially begins. The 

droplet is then processed (e.g. split, mixed, stored) during the 

time-step phase. If a droplet leaves the module after the current 

time-step, it must position itself at one of the module-exit cells 

before the end of the time-step. In Figure 5(a) droplets 1 and 2 

(D1/D2) enter a module to be processed while droplets 3 and 4 

(D3/D4) exit to be processed elsewhere. If D1 and D2 arrive 

before D3 and/or D4 exit, there will be no conflict since the 

entrance and exit cells are sufficiently spaced to avoid droplet 

interference. When the time-step begins, D1 and D2 can move 

freely within the module, as D3 and D4 are at their respective 

destinations. This synchronization scheme prevents inter-module 

deadlocks because there is always an open spot at the destination 

module’s entrances for every incoming droplet at every module. 

 

Figure 4. Virtual topology imposed onto a DMFB. 

 

                

              (a)                               (b)                               (c) 

Figure 5. The entrance cells (I1/I2) and exit cells (O1/O2) of (a) a 3x3 

module, (b) a 4x3 module and (c) a 3x4 module. 

 

 

Figure 6. An assay time-line showing that each fixed time-step (TS) is 

interleaved with a variable-length routing phase (R). 

 



Figure 7 shows how a module can perform each assay operation. 

For each operation, the droplet(s) enters at one of the entrance 

cells and then waits for the time-step to begin. When the time-step 

begins, any droplets that were waiting in the exit cells are now 

gone, and thus, any remaining droplets in the module are free to 

move about the entire module to perform an operation. If the 

droplet(s) leaves the module at the end of the time-step, it moves 

to an exit cell before the time-step ends. Once the time-step is 

complete, during the subsequent routing stage, the droplet(s) exits 

the module. If a droplet is scheduled to begin a new operation in 

the same module at the next time-step, it maneuvers itself to an 

entrance cell before the time-step ends (not shown in Figure 7); 

this eliminates the need for a droplet to exit and then re-enter the 

same module. 

4. FAST ONLINE SYNTHESIS 
In this section, we show how the virtual topology presented in 

Section 3 can be leveraged to create fast online synthesis methods 

for scheduling, placement and routing. 

4.1 Scheduling 
We use list-scheduling (LS) [24] with several extensions to 

schedule assays. LS is a greedy, constructive algorithm in which 

each operation (node) in an assay (DAG) is scheduled exactly 

once. LS is much faster than iterative improvement algorithms, 

which randomly compute numerous schedules [14][19][24] or 

optimal algorithms based on integer linear programming [24]; 

however, these approaches generally do produce higher quality 

schedules than LS. 

4.1.1 Definitions and Constraints  
As mentioned in Section 1.2, an assay is given to the scheduler in 

the form of a DAG,        , where the vertices ( ) and edges 

( ) represent assay operations and operation dependencies, 

respectively. If the given DMFB is an       array of cells and 

each module is       cells, then the total number of modules, 

  , can be calculated as seen in Equation 1. We add 3 to the 

module dimensions to encapsulate the IR cells on all sides and the 

routing cells to the right (for the X dimension) and bottom (for the 

Y dimension) of each module (see Figure 4).  

                                 
      

      
   

      

      
                               (1) 

Once the virtual topology is placed, modules with external devices 

above their cells are considered to be special modules (e.g. detect 

module, heat module); all other modules are considered to be 

basic modules. The array is initially populated based on the virtual 

topology. An array called              contains the number of 

modules of each module-type (e.g. basic module, detect module, 

etc.), and satisfies the following condition: 

                                    
           
                          (2) 

We define    to be the number of droplets a module can store and 

     to be the maximum number of droplets we allow on the 

DMFB during any time-step. Since each module has 2 entrance 

and 2 exit cells, a module can store 2 droplets during a time-step 

(i.e.     ). Consider Figure 8(a) in which all but one of the 

modules is at maximum capacity. Since the northeast module has 

room for one droplet, droplets can be shuffled around so that any 

single droplet on the array can be isolated in any chamber, 

allowing the assay to continue. However, if all modules are at 

maximum capacity (Figure 8(b)), then deadlock may arise 

because it is impossible to process more operations unless some of 

the droplets are scheduled to output or mix with each other next 

time-step. To reduce the likelihood of scheduling deadlock, we set 

the maximum number of droplets permitted on the DMFB during 

any time-step (    ) as follows: 

                                                                            (3) 

Lastly,   is a set of all the input ports and keeps track of when 

input ports have been scheduled for dispensing. 

4.1.2 Scheduling Algorithm 

Merging/Mixing

Splitting

Detecting(/Heating)

 
Storing 

 

Figure 7. Intra-module droplet processing/routing for microfluidic 

operations. 

 

 

                        (a)                                              (b) 

Figure 8. Two DMFB scenarios with droplets that are going to be 

split (Sp) or detected (D) during the next time-step. In (a), Sp6 can 

move and occupy the open space in another module, allowing D1 and 

Sp5 to swap so D1 can be detected in the detect-module. In (b), there 

is no way to isolate a single droplet and since no droplets will be 

mixed next time-step, the assay cannot continue. 

 



We present pseudocode for our list-scheduling (LS) algorithm in 

Figure 9. Before scheduling begins, LS assigns a priority to each 

node ( ) in the assay ( ) based on that node’s critical path length. 

The critical path priority (CPP) for any node   is the largest 

summation of time-steps from   (including  ) to any output in  ’s 

fan-out. Finally, before LS begins scheduling, all nodes with only 

dispense (input) parents are added to the candidate list and the 

scheduling time-step is set to 0. 

Lines 9-43 describe the main scheduling loop which continues 

until all operations are scheduled; each iteration through this loop, 

as many operations as possible are scheduled for the current time-

step before incrementing to the next scheduling time-step (Line 

42). As mentioned in the previous section,              holds 

the available number of free modules for the current time-step. As 

a new time-step begins, operations that are finishing relinquish the 

modules they were using to the scheduler (Lines 10-13). 

Next, the candidate nodes are sorted (Line 15) so that they are 

examined in ascending order (Lines 16-35) based on their CPP. 

Each candidate is checked to see if it can be scheduled by the 

               function in Line 17.                returns 

true if (1) all     dispense parents have free input ports of the 

proper fluid-type in the previous time-steps, (2) all     non-

dispense parents have been scheduled to complete before the 

current time-step, (3) there is a free module to process  , and (4) 

processing   does not violate Equation 3. If   can be scheduled, it 

is                   with a starting and ending time-step and 

module-type.                  selects a module type based on 

    operation-type and always selects a basic module, if possible, 

to conserve the special modules.  

Once   is scheduled, Lines 22-29 examine     parents. If a parent 

is an input, it is scheduled (inputs are not scheduled until a non-

input child is scheduled). For non-dispense parents, a storage node 

is created and inserted between the parent ( ) and child ( ) if the 

parent was scheduled to complete more than one time-step before 

  was scheduled to begin. In Lines 31-33, any of     children 

whose parents are all scheduled are added to the candidate list. 

Lastly, since    storage nodes (each node represents 1 droplet) 

can be stored in a single module, a storage-holder node is added to 

  for each set of    droplets being stored at the current time-step. 

Each storage-holder node is scheduled for 1 time-step, even if the 

droplets they are storing are stored for a longer period of time. 

This is done to prevent specialized modules from storing droplets 

for long periods of time; this way, a droplet stored in a specialized 

module can be moved to a basic module if a specialized operation 

(e.g., heat or detect) requires the specialized module.  

4.2 Placement 
Microfluidic placement is NP-complete [25]; the virtual topology 

limits the reconfigurable capabilities of the DMFB by pre-placing 

the location of modules. In our framework, operations are bound 

to pre-placed modules in accordance with the schedule that has 

been computed a-priori. The scheduler assigns operations to 

module types (e.g., basic or specialized), but does not select a 

specific module for each operation; this is the job of the binder. 

4.2.1 Binding Algorithm 
Our binder is based on the left-edge algorithm, which has been 

used in the past for register allocation and track assignment in 

channel routing [11]. The left-edge algorithm has an         time 

complexity, where     is the number of assay operations. 

Figure 10 shows how the left-edge algorithm binds operations to 

modules for the DMFB shown in Figure 4. Figure 11 provides 

pseudocode for our binding algorithm and can be followed (up to 

Line 20) in the example. A fixed-module bin is created (Line 2) for 

each module in the virtual topology;      for this example. 

Then, each operation is placed into an operation-bin based on the 

module-type it was assigned during scheduling (Lines 9-11). Next, 

the operations in each bin are sorted in ascending order based on 

their start time (Lines 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Pseudocode for our list scheduler algorithm. 

 

 

Figure 10. Left-edge algorithm binding operations to modules. 

 

1   Given sequencing graph:         

2   Given resource constraints:                                      

4   Assign priorities for all nodes:         based on CPP  

5   Find candidate operations:                                         

6   Unfinished operations:      

7                 ; 

8 

9   while (a                                          ) { 

10 if (                     ) 

11     Remove    from unfinished ops   ; 

12                          ++; 

13 end if 

14 

15 Sort candidate ops   in ascending order of CPP; 

16 for (      ) 

17     if (                   ) 

18         Add   to unfinished ops   , remove from candidate ops  ; 

19                                                                 ; 
20                             --;         
21  

22         for (              ) 

23             if (               ) 
24                                                                  ; 

25                else if (          ) 

26                 Create new storage node  ; 

27                                                ; 

28                    Insert   between   and   in  ; 

29         end    for 

30 

31         for (                  ) 

32             if (                                        ) 

33                 Add    to candidate ops  ; 

34     end                if 

35 end    for 

36            

37 for (                                         ) 
38     Create new storage-holder node   ; 

39                                                     ; 
40                          --; 
41 end for 

42   ++; 

43 end while 

 



Lines 17-20 perform the actual binding process. The first module, 

ModBin1, finds the operation bin matching its module-type 

(OpBin1). The binding method then examines each operation in 

OpBin1, in order of start time, to ensure it will not conflict with 

any other operation already assigned to OpBin1 (i.e. that the start 

time of the operation in question is later than the end time of the 

last operation assigned to ModBin1). If an operation is placed in 

ModBin1, it is removed from OpBin1; otherwise, it remains in 

OpBin1 to be bound to another module. This process is repeated 

for the remaining three bins; when the last module (ModBin4) has 

examined its corresponding operation bin (OpBin3), all operations 

will have been bound to a module. 

Lines 23-40 describe how storage operations are bound. Note that 

storage operations are not placed into the operation bins in Lines 

9-11, and thus, were not bound to specific modules; however, the 

storage-holder nodes were bound in Lines 17-20. As mentioned in 

Section 4.1.2, a storage-holder node was created in the scheduling 

phase for each set of    droplets being stored each time-step (i.e. 
         1-time-step storage-holder nodes are created at time-step 

 , where     is the number of droplets being stored at  ). Storage-

holder nodes are created so that storage nodes can be broken into 

a number of smaller, contiguous storage nodes to prevent rare 

modules (e.g. detect modules) from being tied up as storage.  

Each storage node is examined and assigned to one or more 

storage-holder nodes (Lines 23-40) since storage-holders are 

always one time-step. If storage node   has not yet been bound 

(Line 26), a suitable storage-holder is one that shares the same 

starting time as   and is not yet storing its maximum capacity of 

droplets (  ). If this criteria is met by a storage-holder node   , 

then                            (Line 27) marks   as bound, 

assigns it to the same module    is bound to and updates the 

number of droplets    is storing. A variable named        is 

then updated to keep track of how much of   has been bound (for 

storage nodes larger than one time-step). 

Once s has been initially bound (i.e. the first time-step of  ), the 

algorithm attempts to bind the rest of the storage node to the same 

module location (Lines 30-32). It is possible to do this by iterating 

to (Line 25) and examining the next storage-holder in the storage-

holders list since the storage-holders were sorted by their module-

location and start-time, as seen in Line 14. If the next    shares 

the same module as  , has the same start-time as our running end 

(      ) and is not at maximum capacity, we bind   to    to 

update      storage count and update       . If the condition in 

Line 30 cannot be met,   is split at        because it cannot be 

stored in the same module any longer. The new module is inserted 

into the storage list to be bound later. If        equals     end 

time (Line 37), then   has been completely bound and the 

algorithm can return to Line 23 to bind the next storage node. 

4.3 Routing 
To complete the synthesis flow, we use a simplified version of an 

existing droplet router by Roy [20]. We created a number of 

routing methods that restricted routes to the cells in between 

modules, but found that Roy’s maze-routing approach produced 

shorter routes in only a few more milliseconds of computation 

time compared to the alternatives. As in Roy’s router, we use 

Soukup’s fast maze router [21] to produce sequential routes for 

droplets and then compact the routes together, adding stalls in the 

middle of the routes to avoid droplet interference. 

We do modify Roy’s router, however, taking advantage of the 

virtual topology to avoid deadlock (i.e. when droplets form a 

dependency cycle and cannot move forward until one of the 

droplets in the dependency cycle concedes). We describe this 

optimization step in the following subsections. 

4.3.1 Routing Algorithm Overview 
We provide pseudocode for the simplified Roy routing algorithm 

in Figure 12 and Figure 13. The router receives a scheduled and 

placed DAG,  , from the placer. Throughout the routing process, 

all droplets in motion must maintain static and dynamic spacing 

constraints to prevent interference, as shown in Figure 14. 

Instead of having a module-type or fluid-type (for dispense 

nodes), each node now has a reference to a specific module or I/O 

port. An empty set of routes is created which holds a separate 

route for each droplet (Line 3). A route is composed of a set of 

routing points that specify the droplet’s location each cycle. The 

operations of G are copied into a new list,    , and sorted first by 

ascending start time; operations with the same start time are then 

sorted by ascending end time (Line 5). 

Starting at time-step 0 (Line 6), droplet routes are computed one 

routing sub-problem at a time. As seen in Figure 6, a routing sub-

problem (or phase) is the problem of routing a number of droplets 

from their source (input or module) to their destination (module or 

output); routing sub-problems occur between the end of one time-

step and the beginning of the subsequent time-step. Each iteration 

of the loop in Lines 8-15 computes one routing sub-problem. 

For a specific sub-problem, individual routes are first computed 

for each droplet using Soukup’s fast maze routing algorithm (Line 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Pseudocode for our left-edge-based binding algorithm. 

NOTE: Only module binding is shown; input and output binding is left 

out for brevity.  

 

1   Given a scheduled sequencing graph:         

2   Given a list of fixed module schedules:                            

3 

4   Operations by module-type:                             

5   Storage operations:            =              

6   Storage-holder operations:           =                    

7 

8   // Put operations in bins by module-type 

9   for (       ) 

10     if (                                    ) 

11         Add   to                      ; 
12 

13 Sort           and all lists in                , ascending by start time; 

14 Sort          , first by fixed-module location, then ascending by start time; 

15 

16 // Left-edge bind the modules 

17 for (               ) 

18     for (                              ) 
19         if (                      ) 

20             Add   to end of  , remove   from                         ; 
21 

22 // Bind storage into storage-holders 

23 for (               ) 

24                   ; 

25     for (                ) 

26         if (                                                    ) 

27                                      ; 

28                                ; 

29         else if (                 ) 

30             if (                                               ) 

31                                          ; 
32                                    ; 

33           else 

34             Split   at        to form   , add    to front of           ; 

35                Return to outer     for loop; 

36 

37         if (              ) 

38             Remove   from            and return to outer    for loop; 

39     end     for  

40 end    for  



9) [21]. Soukup’s maze router works by routing around blockages; 

it routes straight to its destination until it hits a blockage, at which 

point it attempts to route around it.  

A persisting module is defined as a module that starts before and 

ends after time-step   . For the entire sub-problem at time-step   , 

     persisting modules (including interference regions) are 

marked as blockages for Soukup’s algorithm. Let us define     as 

the set of droplets to be routed during the sub-problem at time-

step   . Then, for each sub-problem droplet       , the 

algorithm sets the source and destination cells, along with an 8-

cell interference region surrounding them, as blockages for each 

sub-problem droplet             . The blockages from the 

persisting modules remain persistent throughout the sub-problem, 

whereas, the blockages from sources and destinations vary 

depending on which droplet is currently being routed. 

The result of Soukup’s routing (Line 9) is a list containing a route 

for each droplet. The routes have no stalls and are not concurrent 

(i.e. the droplets may interfere with each other if routed at the 

same time). Thus, once the individual, sequential routes are 

computed, they are compacted so droplets can be routed 

concurrently (Line 10, explained in the next subsection). Once the 

sub-problem routes are compacted, they are appended to the 

matching droplet routes for the entire assay (Line 11). Finally, the 

time-step (  ) is incremented (Line 12) and any operations 

finished before    are removed (Lines 13-14). When there are no 

more operations to route to, routing is complete. 

4.3.2 Route Compaction 
Route compaction is the process of taking a number of sequential 

routes and causing the droplets to move in parallel at the same 

time; however, the original routes are not created with concern to 

other droplet routes and caution must be taken when compacting 

to prevent routes from intersecting in time and space. When 

compacting routes, droplets may not enter any cell that is adjacent 

to any other droplet or the droplets will interfere (merge) with one 

another. To prevent this, a static interference region (IR) is created 

around each droplet at the beginning of each droplet-actuation 

cycle, as seen in Figure 14(a). As a droplet moves from one cell 

to the next, the IR is stretched dynamically to include the union of 

the static IRs of the beginning and end cells (see Figure 14(b)). In 

general, a droplet may not enter any other droplet’s IR while 

routing. Static and dynamic droplet interference rules are formally 

defined in ref. [27]. 

Figure 13 shows pseudocode for the                  function 

(Figure 12, Line 10). It receives the list of individual routes 

(             ) as described in the last section. The routes are 

sorted in descending order so that the longest route is processed 

first. Lines 5-25 proceed to compact these routes one-at-a-time. 

The index of a route now represents time (i.e.      describes the 

xy-coordinate of a droplet during the first cycle of this routing 

phase). Thus, when determining if route   can be compacted, we 

check each cycle   of     route against any previously-compacted 

route,     at cycle  . Lines 10-12 compute the dynamic and static 

droplet restraints described in Figure 14 and ref. [27]. If an 

interference region violation (IRV) is found between the two 

routes, then   cannot be compacted as is. To remedy this, a single 

stall is added (Line 18) 2 routing cycles before the IRV is 

discovered until the algorithm can successfully compact  .  

It is possible, however, that deadlock may occur if two (or more) 

droplets are waiting for each other to move. In this case, stalling 

cannot resolve the deadlock (e.g. consider the case where two 

droplets are attempting to enter the same cell but cannot because it 

would cause a head-on collision).  

Roy’s router attempts to recover from deadlock by moving one of 

the droplets backward [20]. We simplify the process by taking 

advantage of our virtual topology. With our module 

synchronization, described in Section 3.1, droplets have 

designated sources (module exits) and destinations (module 

entries) that do not interfere with any other sources and 

destinations in a given time-step (i.e. a droplet source will never 

interfere with another droplet’s destination).  Thus, a droplet can 

stay at its source as long as necessary, until all other droplets are 

safely off its path, and then commence its route. By employing 

this method, we are guaranteed to avoid deadlock. 

With this in mind, the router keeps track of the number of stalls 

added to any route  . If the number of stalls added to route   

reaches some threshold,            , all of the stalls added to 

 

 

 

 

 

 

 

 

 

 

Figure 12. Pseudocode for the simplified Roy routing algorithm. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Pseudocode for the CompactRoutes( ) function. 

 

              

 (a)                                            (b) 

Figure 14. The interference region (IR) for a droplet at (a) the beginning 

and (b) end of a droplet-actuation cycle. 

1   Given a scheduled and placed sequencing graph         
2   Assay operations:         

3   List of routes for each droplet for entire assay:           

4 

5   Sort     by start time first, by stop time second, in ascending order; 

6                  ; 

7 

8   while (          ) 

9                                                   ; 
10                                 ; 

11     Append routes in               to       ; 

12       ++; 

13     if (                   ) 

14         Remove   from    ; 

15 end while 

 

1   Given list of individual routes for each sub-problem droplet:               

2   List of compacted routes:                    

3   Sort               in descending order by length; 

4 

5   for (                  ) 

6                               ; 

7                      ; 

8       while (                     ) 

9           for (                      ) 

10            if(                                             

11                                                             

12                                                        ) 

13                                 , jump to line 17;        

14            end if 

15         end     for 

16 

17         if (                  ) 

18            Add a single-cycle stall to   at       ; 
19                               ; 

20        else 

21             ++; 

22        end if 

23    end while 

24    Add   to                ; 

25 end    for 



any route thus far in the sub-problem are removed. Then, the 

entire sub-problem is compacted again, except this time, stalls are 

added to the beginning of the routes instead of the middle (i.e. the 

compaction algorithm in Figure 13 is applied, except Line 18 

adds a stall at      instead of       ). In this case, droplets do 

not leave the safety of their source cell until they are guaranteed 

an unobstructed path in space and time to their destination. 

Consider Figure 15 in which droplets 1 and 2 are being routed 

from their sources (S1 and S2) to their target cells (T1 and T2). As 

seen in the top scenario, if the routes start at the same time, 

deadlock will occur at cycle 3 as droplet 1, at cell (4, 4), and 

droplet 2, at cell (7, 4), cannot move forward without merging. No 

amount of mid-route stalls will resolve this deadlock since they 

are heading straight toward each other; it is not a matter of 

allowing one droplet to pass. The bottom scenario shows that if 

droplet 2 is allowed to stay in its source until droplet 1 is safely 

off its route, droplet 1 can reach its target. Since the cells around 

S2 are considered as blockages to droplet 1, droplet 2 is safe to 

wait at S2 as long as necessary because droplet 1 will never 

attempt to pass through that area, even if its destination is to the 

east of S2. 

Adding stalls to the beginning of a path will always work and will 

never result in deadlock, as can occur when inserting stalls mid-

route; however, we discovered empirically that inserting stalls 

mid-route tends to yield shorter routes, and rarely results in 

deadlock. Thus, we employ the mid-route-stall compaction 

method first and revert to the pre-route-stall compaction method 

only when a deadlock occurs. 

5. EXPERIMENTS 
Our experiments compare the online DMFB synthesis flow 

described in this paper, with a prototypical offline synthesis flow 

based on algorithms described in prior literature. The goal of this 

experiment is to demonstrate that our online flow can achieve 

competitive solutions in terms of total assay execution time, while 

maintaining a low algorithmic runtime overhead. 

5.1 Benchmarks 
We used three standard benchmarks: PCR, in-vitro diagnostics, 

and a protein assay, whose DAGs have been made publicly 

available by researchers at Duke University [23]; we also used the 

provided module libraries to obtain operation timings. We used a 

2x4 mixer (3s) for all PCR mixing operations. For the protein 

assay, we used a 2x4 diluter (5s) and 2x4 mixer (3s) for all dilute 

and mixing operations, respectively; all 2-input, 2-output dilute 

operations in the protein assay were implemented using a mix 

operation, followed by a split operation, which took 5s in total.  

In-vitro diagnostics is actually a family of assays that mixes and 

detects up to 4 samples with 4 reagents (e.g., up to 16 mix-and-

detect operations). We use the 5 in-vitro assays, along with 

mixing and detection times, as listed in Table 1 of ref. [22].  

We assume a droplet actuation frequency of 100 Hz [31]. 

5.2 Offline Synthesis Flow (Baseline) 
Our offline synthesis flow is based on algorithms that have been 

published previously for DMFB synthesis; these algorithms have 

generally been optimized for solution quality, not for runtime. We 

used a genetic algorithm to perform scheduling [24], simulated 

annealing to perform module placement [25] and our 

implementation of Roy’s algorithm for droplet routing [20]. We 

chose Roy’s algorithm for droplet routing because it achieved 

short routes and never failed for any of the routing test cases. 

Roy’s router did not fail in any of our experiments. The offline 

algorithms mentioned in this section are freely available as open 

source [1]. 

5.3 Online Synthesis Flow  
The online synthesis flow is described in Section 4 of this paper. 

The use of the virtual topology eliminates the need for a placer. 

The flow includes three main steps: scheduling, binding, and 

routing; the same router was used in both the online and offline 

flow, as it obtained good quality results and fast runtimes. The 

online algorithms described in this paper are freely available as 

open source [1]. 

5.4 Implementation Details 
The offline and online synthesis flows were implemented in C++ 

using the University of California, Riverside's (UCR's) DMFB 

Synthesis Framework [7]. We evaluated their performance on two 

computers available in our laboratory. The first is an Inforce 

SYS9402-01 development board, with a 1GHz Intel Atom™ E638 

processor and 512MB RAM, running TimeSys 11 Linux. This is a 

relatively low-end embedded system that could be integrated to 

control a DMFB, e.g., to provide a platform for portable 

healthcare diagnostics.  

The second is a 64-bit Windows 7 desktop PC, with 4GB of RAM 

and an Intel Core i7™ CPU operating at 2.8GHz. This platform 

represents a typical use case for a controlled laboratory setting. 

5.5 Results and Discussion 
Table 1 compares the genetic scheduler and list scheduler; 

consistent with prior work [24], the list scheduler produces 

schedules that are several time steps longer than the genetic 

algorithm in most cases; however, this comes at a significant 

overhead in terms of runtime. On both platforms, the list 

scheduler was able to schedule all assays in less than 30ms. 

 
 

 
Figure 15. Droplets 1 and 2 are traveling from source 1 and 2 (S1/S2) to 

target 1 and 2 (T1/T2), respectively. The red and blue (blue also 

underlined for clarity) numbers are time-stamps for droplets 1 and 2, 

respectively). The top scenario shows that deadlock can occur when 

routes 1 and 2 are compacted and stalls are added mid-route. The 

bottom scenario shows that both routes are safely completed if droplet 2 

stalls at its source location until droplet 1 is safely out of the way. 



Table 2 compares the simulated annealing-based placer to the 

online binder proposed in this paper. The binder runs several 

orders of magnitude faster than the placer on both platforms; in 

most cases, the runtime of the binder was faster than the 

resolution of the function that we use to measure execution time 

(e.g., faster than 0.5 ms).  As we will see shortly, the impact on 

total assay execution time is negligible.  

Table 3 reports the results of the router; due to inferior schedule 

qualities, the online synthesis flow has more routing sub-problems 

to solve than the offline flow. Table 3 sums the total number of 

cycles (1 cycle = .01s with 100Hz droplet-actuation frequency) 

required for droplet routing across all sub-problems. It is 

important to note that even when the schedules are identical, the 

placer will yield a different sub-problem than the virtual topology. 

We ignore sub-problems where all droplet routes start and stop at 

the same module; this explains, for example, why the online flow 

has 45 sub-problems for Protein, while the offline router has 71.  

Table 3 shows that the runtimes of the router are a little bit slower 

for our virtual topology, compared to the placer; however, the 

algorithmic runtime advantages of the list scheduler and binder 

compared to the genetic scheduler and placer far outweigh the 

disparity between the runtimes of the routers. 

Tables 4 and Table 5 compare the total computation time (CT) 

and the assay execution time (AT) for both flows on the Intel 

AtomTM processor; please note that the times reported here are in 

seconds (s), whereas the times reported in Tables 1-3 are in 

milliseconds (ms). We can see that the total runtime, AT+CT, is 

significantly lower for the online flow than for the offline flow, 

except for PCR, which is a very small benchmark. The most 

dramatic results that favor the online synthesis flow are for the 

largest benchmarks, InVitro_4 and 5 and Protein, where the 

runtimes are reduced by two orders of magnitude. 

6. CONCLUSION 
The online synthesis flow introduced in this paper can run in real-

time on a low-cost embedded processor, as typified by the Intel 

AtomTM used in our experiments. Empirically, this work has 

shown that a virtual topology coupled with a simple binding 

algorithm can be nearly as effective as longer-running placement 

algorithms based on simulated annealing. Using this approach, the 

synthesis flow spends most of its time on scheduling, which is the 

step that has the most significant impact on assay execution time. 

Our future work will extend the online synthesis flow to account 

for control flow operations that cannot be predicted at compile-

time, including variable-latency assay operations, and runtime 

fault detection and recovery; of particular interest is the ability to 

dynamically reconfigure the virtual topology when permanent 

errors are detected; when this occurs, the online flow will be 

invoked to re-synthesize the assay at runtime. 
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Table 4. Results showing the assay time (AT, i.e. the schedule and route 

lengths) and computation times (CT) for the entire offline flow on the 

Intel Atom processor. 

 

 Table 5. Results showing the assay time (AT, i.e. the schedule and route 

lengths) and computation times (CT) for the entire online flow on the 

Intel Atom processor. 

 

Table 3. Results showing route lengths and computation times (on Intel 

i7 and Atom processors) for the classic offline flow (GA/SA) and our 

proposed online flow (List/Binding). 

 

Table 1. Results showing the schedule lengths and computation times 

(on Intel i7 and Atom processors) for genetic and list scheduling. 

 

Table 2. Results showing computation times (on Intel i7 and Atom 

processors) for simulated annealing and module binding. 
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